Invariant measures for singular hyperbolic attractors
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 419-470

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the author's previous paper, where strong unstable spaces were constructed for a singular hyperbolic attractor. In this paper the existence of local strongly unstable manifolds and invariant measures of Sinaǐ-Bowen-Ruelle type is established. The properties of such measures are studied. It is proved that the number of ergodic components is finite and the set of periodic trajectories is dense. Bibliography: 34 titles.
Keywords: singular hyperbolic systems, unstable manifolds, invariant measures, ergodicity.
@article{SM_2010_201_3_a4,
     author = {E. A. Sataev},
     title = {Invariant measures for singular hyperbolic attractors},
     journal = {Sbornik. Mathematics},
     pages = {419--470},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Invariant measures for singular hyperbolic attractors
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 419
EP  - 470
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/
LA  - en
ID  - SM_2010_201_3_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Invariant measures for singular hyperbolic attractors
%J Sbornik. Mathematics
%D 2010
%P 419-470
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/
%G en
%F SM_2010_201_3_a4
E. A. Sataev. Invariant measures for singular hyperbolic attractors. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 419-470. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/