Invariant measures for singular hyperbolic attractors
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 419-470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the author's previous paper, where strong unstable spaces were constructed for a singular hyperbolic attractor. In this paper the existence of local strongly unstable manifolds and invariant measures of Sinaǐ-Bowen-Ruelle type is established. The properties of such measures are studied. It is proved that the number of ergodic components is finite and the set of periodic trajectories is dense. Bibliography: 34 titles.
Keywords: singular hyperbolic systems, unstable manifolds, invariant measures, ergodicity.
@article{SM_2010_201_3_a4,
     author = {E. A. Sataev},
     title = {Invariant measures for singular hyperbolic attractors},
     journal = {Sbornik. Mathematics},
     pages = {419--470},
     year = {2010},
     volume = {201},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Invariant measures for singular hyperbolic attractors
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 419
EP  - 470
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/
LA  - en
ID  - SM_2010_201_3_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Invariant measures for singular hyperbolic attractors
%J Sbornik. Mathematics
%D 2010
%P 419-470
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/
%G en
%F SM_2010_201_3_a4
E. A. Sataev. Invariant measures for singular hyperbolic attractors. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 419-470. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/

[1] C. A. Morales, M. J. Pacifico, E. R. Pujals, “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris Sér. I Math., 326:1 (1998), 81–86 | DOI | MR | Zbl

[2] D. V. Turaev, L. P. Shil'nikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | MR | Zbl

[3] L. Shilnikov, “Bifurcations and strange attractors”, Proceedings of the international congress of mathematicians, Vol. III (Beijing, China, 2002), Higher Education Press, Beijing, 2002, 349–372 ; arXiv: math/0304457 | MR | Zbl

[4] E. A. Sataev, “Some properties of singular hyperbolic attractors”, Sb. Math., 200:1 (2009), 35–76 | DOI | MR | Zbl

[5] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967) | MR | Zbl | Zbl

[6] M. W. Hirsh, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[7] Ya. G. Sinai, “Markov partitions and $C$-diffeomorphisms”, Funct. Anal. Appl., 2:1 (1968), 61–82 | DOI | MR | Zbl

[8] D. V. Anosov, Ya. G. Sinai, “Some smooth ergodic systems”, Russian Math. Surveys, 22:5 (1967), 103–167 | DOI | MR | Zbl

[9] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] B. Saltzman, “Finite amplitude free convectiions as an initial value problem – I”, J. Atmospheric Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] V. S. Afrajmovich, V. V. Bykov, L. P. Shil'nikov, “On the origin and structure of the Lorenz attractor”, Sov. Phys. Dokl., 22 (1977), 253–255 | MR | Zbl

[12] V. S. Afrajmovich, V. V. Bykov, L. P. Shil'nikov, “On structurally unstable attracting limit sets of Lorenz attractor type”, Trans. Moscow Math. Soc., 2 (1983), 153–216 | MR | Zbl | Zbl

[13] J. Guckenheimer, “A strange, strange attractor”, The Hopf bifurcation and its applications, New York–Heidelberg–Berlin, Springer-Verlag, 1976 | MR | Zbl

[14] J. Guckenheimer, R. F. Williams, “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50:1 (1979), 59–72 | DOI | MR | Zbl

[15] J. A. Yorke, E. D. Yorke, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, J. Statist. Phys., 21:3 (1979), 263–277 | DOI | MR

[16] J. L. Kaplan, J. A. Yorke, “Preturbulence: a regime observed in a fluid flow model of Lorenz”, Comm. Math. Phys., 67:2 (1979), 93–108 | DOI | MR | Zbl

[17] L. A. Bunimovich, Ya. G. Sinai, “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, M., Nauka, 1979, 212–226

[18] Ya. B. Pesin, “Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl

[19] E. A. Sataev, “Gibbs measures for one-dimensional attractors of hyperbolic mappings with singularities”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 567–580 | DOI | MR | Zbl

[20] S. Luzzatto, I. Melbourn, F. Paccaut, “The Lorenz attractor is mixing”, Comm. Math Phys., 260:2 (2005), 393–401 | DOI | MR | Zbl

[21] M. Holland, I. Melbourn, “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc. (2), 76:2 (2007), 345–364 | DOI | MR | Zbl

[22] V. Araujo, M. J. Pacifico, E. R. Pugals, M. Viana, “Singular-hyperbolic attractors are chaotic”, Trans. Amer. Math. Soc., 361:5 (2009), 2431–2485 | DOI | MR | Zbl

[23] A. Arroyo, E. R. Pujals, “Dynamical properties of singular-hyperbolic attractors”, Discrete Contin. Dyn. Syst., 19:1 (2007), 67–87 | DOI | MR | Zbl

[24] C. Bonatti, L. Díaz, E. R. Pujals, “A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources”, Ann. of Math. (2), 158:2 (2003), 355–418 | DOI | MR | Zbl

[25] L. J. Díaz, E. R. Pujals, R. Ures, “Partial hyperbolicity and robust transitivity”, Acta Math., 183:1 (1999), 1–43 | DOI | MR | Zbl

[26] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Singular hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl

[27] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers”, Ann. of Math. (2), 160:2 (2004), 375–432 | DOI | MR | Zbl

[28] C. A. Morales, M. J. Pacifico, “Mixing attractors for 3-flows”, Nonlinearity, 14:2 (2001), 359–378 | DOI | MR | Zbl

[29] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Strange attractors across the boundary of hyperbolic systems”, Comm. Math. Phys., 211:3 (2000), 527–558 | DOI | MR | Zbl

[30] C. A. Morales, M. J. Pacifico, “A dichotomy for three-dimensional vector fields”, Ergodic Theory Dynam. Systems, 23:5 (2003) | DOI | MR | Zbl

[31] C. M. Carballo, C. A. Morales, M. J. Pacifico, “Homoclinic classes for generic $C^1$ vector fields”, Ergodic Theory Dynam. Systems, 23:2 (2003), 403–415 | DOI | MR | Zbl

[32] M. J. Pacifico, E. R. Pujals, J. L. Vieitez, “Robustly expansive homoclinic classes”, Ergodic Theory Dynam. Systems, 25:1 (2005), 271–300 | DOI | MR | Zbl

[33] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl

[34] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., European Math. Soc., Zürich, 2004 | MR | Zbl