@article{SM_2010_201_3_a4,
author = {E. A. Sataev},
title = {Invariant measures for singular hyperbolic attractors},
journal = {Sbornik. Mathematics},
pages = {419--470},
year = {2010},
volume = {201},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/}
}
E. A. Sataev. Invariant measures for singular hyperbolic attractors. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 419-470. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a4/
[1] C. A. Morales, M. J. Pacifico, E. R. Pujals, “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris Sér. I Math., 326:1 (1998), 81–86 | DOI | MR | Zbl
[2] D. V. Turaev, L. P. Shil'nikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | MR | Zbl
[3] L. Shilnikov, “Bifurcations and strange attractors”, Proceedings of the international congress of mathematicians, Vol. III (Beijing, China, 2002), Higher Education Press, Beijing, 2002, 349–372 ; arXiv: math/0304457 | MR | Zbl
[4] E. A. Sataev, “Some properties of singular hyperbolic attractors”, Sb. Math., 200:1 (2009), 35–76 | DOI | MR | Zbl
[5] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967) | MR | Zbl | Zbl
[6] M. W. Hirsh, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl
[7] Ya. G. Sinai, “Markov partitions and $C$-diffeomorphisms”, Funct. Anal. Appl., 2:1 (1968), 61–82 | DOI | MR | Zbl
[8] D. V. Anosov, Ya. G. Sinai, “Some smooth ergodic systems”, Russian Math. Surveys, 22:5 (1967), 103–167 | DOI | MR | Zbl
[9] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[10] B. Saltzman, “Finite amplitude free convectiions as an initial value problem – I”, J. Atmospheric Sci., 19:2 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[11] V. S. Afrajmovich, V. V. Bykov, L. P. Shil'nikov, “On the origin and structure of the Lorenz attractor”, Sov. Phys. Dokl., 22 (1977), 253–255 | MR | Zbl
[12] V. S. Afrajmovich, V. V. Bykov, L. P. Shil'nikov, “On structurally unstable attracting limit sets of Lorenz attractor type”, Trans. Moscow Math. Soc., 2 (1983), 153–216 | MR | Zbl | Zbl
[13] J. Guckenheimer, “A strange, strange attractor”, The Hopf bifurcation and its applications, New York–Heidelberg–Berlin, Springer-Verlag, 1976 | MR | Zbl
[14] J. Guckenheimer, R. F. Williams, “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50:1 (1979), 59–72 | DOI | MR | Zbl
[15] J. A. Yorke, E. D. Yorke, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, J. Statist. Phys., 21:3 (1979), 263–277 | DOI | MR
[16] J. L. Kaplan, J. A. Yorke, “Preturbulence: a regime observed in a fluid flow model of Lorenz”, Comm. Math. Phys., 67:2 (1979), 93–108 | DOI | MR | Zbl
[17] L. A. Bunimovich, Ya. G. Sinai, “Stokhastichnost attraktora v modeli Lorentsa”, Nelineinye volny, M., Nauka, 1979, 212–226
[18] Ya. B. Pesin, “Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl
[19] E. A. Sataev, “Gibbs measures for one-dimensional attractors of hyperbolic mappings with singularities”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 567–580 | DOI | MR | Zbl
[20] S. Luzzatto, I. Melbourn, F. Paccaut, “The Lorenz attractor is mixing”, Comm. Math Phys., 260:2 (2005), 393–401 | DOI | MR | Zbl
[21] M. Holland, I. Melbourn, “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc. (2), 76:2 (2007), 345–364 | DOI | MR | Zbl
[22] V. Araujo, M. J. Pacifico, E. R. Pugals, M. Viana, “Singular-hyperbolic attractors are chaotic”, Trans. Amer. Math. Soc., 361:5 (2009), 2431–2485 | DOI | MR | Zbl
[23] A. Arroyo, E. R. Pujals, “Dynamical properties of singular-hyperbolic attractors”, Discrete Contin. Dyn. Syst., 19:1 (2007), 67–87 | DOI | MR | Zbl
[24] C. Bonatti, L. Díaz, E. R. Pujals, “A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources”, Ann. of Math. (2), 158:2 (2003), 355–418 | DOI | MR | Zbl
[25] L. J. Díaz, E. R. Pujals, R. Ures, “Partial hyperbolicity and robust transitivity”, Acta Math., 183:1 (1999), 1–43 | DOI | MR | Zbl
[26] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Singular hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl
[27] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers”, Ann. of Math. (2), 160:2 (2004), 375–432 | DOI | MR | Zbl
[28] C. A. Morales, M. J. Pacifico, “Mixing attractors for 3-flows”, Nonlinearity, 14:2 (2001), 359–378 | DOI | MR | Zbl
[29] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Strange attractors across the boundary of hyperbolic systems”, Comm. Math. Phys., 211:3 (2000), 527–558 | DOI | MR | Zbl
[30] C. A. Morales, M. J. Pacifico, “A dichotomy for three-dimensional vector fields”, Ergodic Theory Dynam. Systems, 23:5 (2003) | DOI | MR | Zbl
[31] C. M. Carballo, C. A. Morales, M. J. Pacifico, “Homoclinic classes for generic $C^1$ vector fields”, Ergodic Theory Dynam. Systems, 23:2 (2003), 403–415 | DOI | MR | Zbl
[32] M. J. Pacifico, E. R. Pujals, J. L. Vieitez, “Robustly expansive homoclinic classes”, Ergodic Theory Dynam. Systems, 25:1 (2005), 271–300 | DOI | MR | Zbl
[33] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[34] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., European Math. Soc., Zürich, 2004 | MR | Zbl