On the index of noncommutative elliptic operators over $C^*$-algebras
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 377-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider noncommutative elliptic operators over $C^*$-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained. Bibliography: 36 titles.
Keywords: noncommutative elliptic operators, operators over $C^*$-algebras, index formulas, crossed product.
@article{SM_2010_201_3_a3,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {On the index of noncommutative elliptic operators over $C^*$-algebras},
     journal = {Sbornik. Mathematics},
     pages = {377--417},
     year = {2010},
     volume = {201},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - On the index of noncommutative elliptic operators over $C^*$-algebras
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 377
EP  - 417
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/
LA  - en
ID  - SM_2010_201_3_a3
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T On the index of noncommutative elliptic operators over $C^*$-algebras
%J Sbornik. Mathematics
%D 2010
%P 377-417
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/
%G en
%F SM_2010_201_3_a3
A. Yu. Savin; B. Yu. Sternin. On the index of noncommutative elliptic operators over $C^*$-algebras. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 377-417. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/

[1] A. Connes, “$C^{\ast} $ algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A-B, 290:13 (1980), 599–604 | MR | Zbl

[2] A. Connes, G. Landi, “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221:1 (2001), 141–159 | DOI | MR | Zbl

[3] A. Connes, M. Dubois-Violette, “Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples”, Comm. Math. Phys., 230:3 (2002), 539–579 | DOI | MR | Zbl

[4] G. Landi, W. van Suijlekom, “Principal fibrations from noncommutative spheres”, Comm. Math. Phys., 260:1 (2005), 203–225 | DOI | MR | Zbl

[5] A. S. Miščenko, A. T. Fomenko, “The index of elliptic operators over $C^*$-algebras”, Math. USSR Izv., 15:1 (1980), 87–112 | DOI | MR | Zbl | Zbl

[6] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62:1 (1985), 41–144 | DOI | MR | Zbl

[7] J. Lott, “Superconnections and higher index theory”, Geom. Funct. Anal., 2:4 (1992), 421–454 | DOI | MR | Zbl

[8] Th. Schick, “$L^2$-index theorems, $KK$-theory, and connections”, New York J. Math., 11 (2005), 387–443 | MR | Zbl

[9] Ch. Wahl, “Homological index formulas for elliptic operators over $C^*$-algebras”, New York J. Math., 15 (2009), 319–351 ; arXiv: abs/math/0603694 | MR | Zbl

[10] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry, Oper. Theory Adv. Appl., 183, Birkhäuser, Basel, 2008 | MR | Zbl

[11] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[12] M. Karoubi, “Homologie cyclique et $K$-théorie”, Astérisque, 1987, no. 149, 1–147 | MR | Zbl

[13] P. Baum, A. Connes, “Chern character for discrete groups”, A fête of topology, Academic Press, Boston, MA, 1988, 163–232 | MR | Zbl

[14] A. B. Antonevich, “On the index of a pseudodifferential operator with a finite group of shifts”, Dokl. Sov. Math., 11 (1979), 168–170 | Zbl

[15] F. M. Azmi, “The equivariant Dirac cyclic cocycle”, Rocky Mountain J. Math., 30:4 (2000), 1171–1206 | DOI | MR | Zbl

[16] E. Park, “Index theory of Toeplitz operators associated to transformation group $C^*$-algebras”, Pacific J. Math., 223:1 (2006), 159–165 | DOI | MR | Zbl

[17] G. K. Pedersen, $C^*$-algebras and their automorphism groups, London Math. Soc. Monogr., 14, Academic Press, London–New York, 1979 | MR | Zbl

[18] A. Antonevich, A. Lebedev, Functional differential equations: I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman, Harlow; Wiley, New York, 1994 | MR | Zbl

[19] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math., 1981, no. 53, 53–78 | DOI | MR | Zbl

[20] L. B. Schweitzer, “Spectral invariance of dense subalgebras of operator algebras”, Internat. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl

[21] J. J. Kohn, L. Nirenberg, “An algebra of pseudo-differential operators”, Comm. Pure Appl. Math., 18:1–2 (1965), 269–305 | DOI | MR | Zbl

[22] G. Luke, A. S. Mishchenko, Vector bundles and their applications, Math. Appl., 447, Kluwer Acad. Publ., Dordrecht, 1998 | MR | MR | Zbl | Zbl

[23] A. Savin, “Elliptic operators on manifolds with singularities and $K$-homology”, $K$-Theory, 34:1 (2005), 71–98 | DOI | MR | Zbl

[24] W. Zhang, Lectures on Chern–Weil theory and Witten deformations, Nankai Tracts Math., 4, World Scientific, River Edge, NJ, 2001 | MR | Zbl

[25] M. F. Atiyah, G. B. Segal, “The index of elliptic operators. II”, Ann. of Math. (2), 87:3 (1968), 531–545 | DOI | MR | MR | Zbl

[26] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. III”, Ann. of Math. (2), 87:3 (1968), 546–604 | DOI | MR | MR | Zbl

[27] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I”, Ann. of Math. (2), 87:3 (1968), 484–530 | DOI | MR | MR | Zbl

[28] G. G. Kasparov, “Topological invariants of elliptic operators. I: $K$-homology”, Math. USSR-Izv., 9:4 (1975), 751–792 | DOI | MR | Zbl | Zbl

[29] B. Blackadar, $K$-theory for operator algebras, Math. Sci. Res. Inst. Publ., 5, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[30] D. P. Williams, Crossed products of $C$*-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[31] J. Chabert, S. Echterhoff, H. Oyono-Oyono, “Going-down functors, the Künneth formula, and the Baum–Connes conjecture”, Geom. Funct. Anal., 14:3 (2004), 491–528 | DOI | MR | Zbl

[32] N. Higson, G. Kasparov, “$E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space”, Invent. Math., 144:1 (2001), 23–74 | DOI | MR | Zbl

[33] J.-L. Tu, “La conjecture de Baum–Connes pour les feuilletages moyennables”, $K$-Theory, 17:3 (1999), 215–264 | DOI | MR | Zbl

[34] C. Schochet, “Topological methods for $C^*$-algebras. II: Geometric resolutions and the Kuenneth formula”, Pacific J. Math., 98:2 (1982), 443–458 | MR | Zbl

[35] R. Ji, L. B. Schweitzer, “Spectral invariance of smooth crossed products, and rapid decay locally compact groups”, $K$-Theory, 10:3 (1996), 283–305 | DOI | MR | Zbl

[36] X. Chen, Sh. Wei, “Spectral invariant subalgebras of reduced crossed product $C^*$-algebras”, J. Funct. Anal., 197:1 (2003), 228–246 | DOI | MR | Zbl