On the index of noncommutative elliptic operators over $C^*$-algebras
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 377-417
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider noncommutative elliptic operators over $C^*$-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained.
Bibliography: 36 titles.
Keywords:
noncommutative elliptic operators, operators over $C^*$-algebras, index formulas, crossed product.
@article{SM_2010_201_3_a3,
author = {A. Yu. Savin and B. Yu. Sternin},
title = {On the index of noncommutative elliptic operators over $C^*$-algebras},
journal = {Sbornik. Mathematics},
pages = {377--417},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/}
}
A. Yu. Savin; B. Yu. Sternin. On the index of noncommutative elliptic operators over $C^*$-algebras. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 377-417. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a3/