Mots-clés : inverting the Fréchet completion.
@article{SM_2010_201_3_a2,
author = {A. A. Dosi},
title = {The {Taylor} spectrum and transversality for {a~Heisenberg} algebra of operators},
journal = {Sbornik. Mathematics},
pages = {355--375},
year = {2010},
volume = {201},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/}
}
A. A. Dosi. The Taylor spectrum and transversality for a Heisenberg algebra of operators. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/
[1] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Advances in Math., 9:2 (1972), 183–252 | DOI | MR | Zbl
[2] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9:2 (1972), 137–182 | DOI | MR | Zbl
[3] A. Ya. Khelemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[4] V. P. Maslov, Operational methods, Mir, Moscow, 1976 | MR | MR | Zbl | Zbl
[5] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Functional Analysis, 6:2 (1970), 172–191 | DOI | MR | Zbl
[6] J. L. Taylor, “The analytic-functional calculus for several commuting operators”, Acta Math., 125:1 (1970), 1–38 | DOI | MR | Zbl
[7] J. Eschmeier, M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monogr. (N.S.), 10, Clarendon Press, Oxford Univ. Press, Oxford, 1996 | MR | Zbl
[8] E. Boasso, “Dual properties and joint spectra for solvable Lie algebras of operators”, J. Operator Theory, 33:1 (1995), 105–116 | MR | Zbl
[9] A. S. Fainshtein, “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29:1 (1993), 3–27 | MR | Zbl
[10] A. Dosiev, “Spectra of infinite parametrized Banach complexes”, J. Operator Theory, 48:3 (2002), 585–614 | MR | Zbl
[11] A. Dosiev, “Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, J. Funct. Anal., 230:2 (2006), 446–493 | DOI | MR | Zbl
[12] A. Dosiev, “Quasispectra of solvable Lie algebra homomorphisms into Banach algebras”, Studia Math., 174:1 (2006), 13–27 | DOI | MR | Zbl
[13] A. A. Dosiev, “Holomorphic functions of a basis of a nilpotent Lie algebra”, Funct. Anal. Appl., 34:4 (2000), 302–304 | DOI | MR | Zbl
[14] A. Dosiev, “Algebras of power series of elements of a Lie algebra and the Slodkowski spectra”, J. Math. Sci. (N. Y.), 124:2 (2004), 4886–4908 | DOI | MR | Zbl
[15] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Mat.), 441 (2006) ; arXiv: math/0311492v2 | DOI | MR | Zbl
[16] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologiya, Nauka, M., 1989 | MR | Zbl
[17] A. A. Dosi, “Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem”, Izv. Math., 73:6 (2009), 1149–1171 | DOI | Zbl
[18] A. A. Dosiev, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloquium (to appear)
[19] A. Dosi, “Fréchet sheaves and Taylor spectrum for supernilpotent Lie algebras of operators”, Mediterr. J. Math., 6:2 (2009), 181–201 | DOI | MR | Zbl
[20] M. Kapranov, “Noncommutative geometry based on conductor expansions”, J. Reine Angew. Math., 505 (1998), 73–118 | DOI | MR | Zbl
[21] A. A. Dosiev, “Cohomology of sheaves of Frechet algebras and spectral theory”, Funct. Anal. Appl., 39:3 (2005), 225–228 | DOI | MR | Zbl
[22] A. A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 2010 (to appear)
[23] A. A. Dosiev, “Homological dimensions of the algebra formed by entire functions of elements of a nilpotent Lie algebra”, Funct. Anal. Appl., 37:1 (2003), 61–64 | DOI | MR | Zbl
[24] A. Dosiev, “Local left invertibility for operator tuples and noncommutative localizations”, J. K-Theory, 4:1 (2009), 163–191 | DOI | MR | Zbl
[25] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris–Brussels–Montreal, 1974 | MR | MR | Zbl