The Taylor spectrum and transversality for a~Heisenberg algebra of operators
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.
Keywords: holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property, inverting the Fréchet completion.
@article{SM_2010_201_3_a2,
     author = {A. A. Dosi},
     title = {The {Taylor} spectrum and transversality for {a~Heisenberg} algebra of operators},
     journal = {Sbornik. Mathematics},
     pages = {355--375},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/}
}
TY  - JOUR
AU  - A. A. Dosi
TI  - The Taylor spectrum and transversality for a~Heisenberg algebra of operators
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 355
EP  - 375
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/
LA  - en
ID  - SM_2010_201_3_a2
ER  - 
%0 Journal Article
%A A. A. Dosi
%T The Taylor spectrum and transversality for a~Heisenberg algebra of operators
%J Sbornik. Mathematics
%D 2010
%P 355-375
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/
%G en
%F SM_2010_201_3_a2
A. A. Dosi. The Taylor spectrum and transversality for a~Heisenberg algebra of operators. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/