The Taylor spectrum and transversality for a Heisenberg algebra of operators
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra. Bibliography: 25 titles.
Keywords: holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property
Mots-clés : inverting the Fréchet completion.
@article{SM_2010_201_3_a2,
     author = {A. A. Dosi},
     title = {The {Taylor} spectrum and transversality for {a~Heisenberg} algebra of operators},
     journal = {Sbornik. Mathematics},
     pages = {355--375},
     year = {2010},
     volume = {201},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/}
}
TY  - JOUR
AU  - A. A. Dosi
TI  - The Taylor spectrum and transversality for a Heisenberg algebra of operators
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 355
EP  - 375
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/
LA  - en
ID  - SM_2010_201_3_a2
ER  - 
%0 Journal Article
%A A. A. Dosi
%T The Taylor spectrum and transversality for a Heisenberg algebra of operators
%J Sbornik. Mathematics
%D 2010
%P 355-375
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/
%G en
%F SM_2010_201_3_a2
A. A. Dosi. The Taylor spectrum and transversality for a Heisenberg algebra of operators. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/

[1] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Advances in Math., 9:2 (1972), 183–252 | DOI | MR | Zbl

[2] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9:2 (1972), 137–182 | DOI | MR | Zbl

[3] A. Ya. Khelemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[4] V. P. Maslov, Operational methods, Mir, Moscow, 1976 | MR | MR | Zbl | Zbl

[5] J. L. Taylor, “A joint spectrum for several commuting operators”, J. Functional Analysis, 6:2 (1970), 172–191 | DOI | MR | Zbl

[6] J. L. Taylor, “The analytic-functional calculus for several commuting operators”, Acta Math., 125:1 (1970), 1–38 | DOI | MR | Zbl

[7] J. Eschmeier, M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monogr. (N.S.), 10, Clarendon Press, Oxford Univ. Press, Oxford, 1996 | MR | Zbl

[8] E. Boasso, “Dual properties and joint spectra for solvable Lie algebras of operators”, J. Operator Theory, 33:1 (1995), 105–116 | MR | Zbl

[9] A. S. Fainshtein, “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29:1 (1993), 3–27 | MR | Zbl

[10] A. Dosiev, “Spectra of infinite parametrized Banach complexes”, J. Operator Theory, 48:3 (2002), 585–614 | MR | Zbl

[11] A. Dosiev, “Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, J. Funct. Anal., 230:2 (2006), 446–493 | DOI | MR | Zbl

[12] A. Dosiev, “Quasispectra of solvable Lie algebra homomorphisms into Banach algebras”, Studia Math., 174:1 (2006), 13–27 | DOI | MR | Zbl

[13] A. A. Dosiev, “Holomorphic functions of a basis of a nilpotent Lie algebra”, Funct. Anal. Appl., 34:4 (2000), 302–304 | DOI | MR | Zbl

[14] A. Dosiev, “Algebras of power series of elements of a Lie algebra and the Slodkowski spectra”, J. Math. Sci. (N. Y.), 124:2 (2004), 4886–4908 | DOI | MR | Zbl

[15] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Mat.), 441 (2006) ; arXiv: math/0311492v2 | DOI | MR | Zbl

[16] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologiya, Nauka, M., 1989 | MR | Zbl

[17] A. A. Dosi, “Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem”, Izv. Math., 73:6 (2009), 1149–1171 | DOI | Zbl

[18] A. A. Dosiev, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloquium (to appear)

[19] A. Dosi, “Fréchet sheaves and Taylor spectrum for supernilpotent Lie algebras of operators”, Mediterr. J. Math., 6:2 (2009), 181–201 | DOI | MR | Zbl

[20] M. Kapranov, “Noncommutative geometry based on conductor expansions”, J. Reine Angew. Math., 505 (1998), 73–118 | DOI | MR | Zbl

[21] A. A. Dosiev, “Cohomology of sheaves of Frechet algebras and spectral theory”, Funct. Anal. Appl., 39:3 (2005), 225–228 | DOI | MR | Zbl

[22] A. A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 2010 (to appear)

[23] A. A. Dosiev, “Homological dimensions of the algebra formed by entire functions of elements of a nilpotent Lie algebra”, Funct. Anal. Appl., 37:1 (2003), 61–64 | DOI | MR | Zbl

[24] A. Dosiev, “Local left invertibility for operator tuples and noncommutative localizations”, J. K-Theory, 4:1 (2009), 163–191 | DOI | MR | Zbl

[25] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris–Brussels–Montreal, 1974 | MR | MR | Zbl