The Taylor spectrum and transversality for a~Heisenberg algebra of operators
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375
Voir la notice de l'article provenant de la source Math-Net.Ru
A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra.
Bibliography: 25 titles.
Keywords:
holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property, inverting the Fréchet completion.
@article{SM_2010_201_3_a2,
author = {A. A. Dosi},
title = {The {Taylor} spectrum and transversality for {a~Heisenberg} algebra of operators},
journal = {Sbornik. Mathematics},
pages = {355--375},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/}
}
A. A. Dosi. The Taylor spectrum and transversality for a~Heisenberg algebra of operators. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a2/