@article{SM_2010_201_3_a1,
author = {B. M. Gurevich and A. A. Tempel'man},
title = {Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system},
journal = {Sbornik. Mathematics},
pages = {339--354},
year = {2010},
volume = {201},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/}
}
TY - JOUR AU - B. M. Gurevich AU - A. A. Tempel'man TI - Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system JO - Sbornik. Mathematics PY - 2010 SP - 339 EP - 354 VL - 201 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/ LA - en ID - SM_2010_201_3_a1 ER -
B. M. Gurevich; A. A. Tempel'man. Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/
[1] D. Ruelle, Thermodynamic formalism, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, MA, 1978 | MR | Zbl
[2] H.-O. Georgii, Gibbs measures and phase transitions, de Gruyter Stud. Math., 9, de Gruyter, Berlin, 1988 | MR | MR | Zbl
[3] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl | Zbl
[4] B. M. Gurevich, A. A. Tempelman, “Hausdorff dimension of sets of generic points for Gibbs measures”, J. Statist. Phys., 108:5–6 (2002), 1281–1301 | DOI | MR | Zbl
[5] B. M. Gurevich, A. A. Tempelman, “Markov approximation of homogeneous lattice random fields”, Probab. Theory Related Fields, 131:4 (2005), 519–527 | DOI | MR | Zbl
[6] B. M. Gurevich, A. A. Tempelman, “On sets of time and space averages for continuous functions on a configuration space”, Russian Math. Surveys, 58:2 (2003), 370–371 | DOI | MR | Zbl
[7] O. Jenkinson, “Rotation, entropy, and equilibrium states”, Trans. Amer. Math. Soc., 353:9 (2001), 3713–3739 | DOI | MR | Zbl
[8] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin–New York, 1985 | MR | Zbl
[9] A. Dold, Lectures on algebraic topol, Springer-Verlag, New York–Berlin, 1972 | MR | MR | Zbl
[10] A. A. Tempelman, “Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem”, J. Dynam. Control Systems, 7:4 (2001), 535–551 | DOI | MR | Zbl
[11] F. Hofbauer, “Examples for the nonuniqueness of the equilibrium state”, Trans. Amer. Math. Soc., 228 (1977), 223–241 | DOI | MR | Zbl
[12] E. Olivier, “Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for $g$-measures”, Nonlinearity, 12:6 (1999), 1571–1585 | DOI | MR | Zbl
[13] P. Walters, “Ruelle's operator theorem and $g$-measures”, Trans. Amer. Math. Soc., 214 (1975), 375–387 | DOI | MR | Zbl
[14] F. Takens, E. Verbitskiy, “On the variational principle for the topological entropy of certain non-compact sets”, Ergodic Theory Dynam. Systems, 23:1 (2003), 317–348 | DOI | MR | Zbl
[15] J. C. Oxtoby, “On two theorems of Parthasarathy and Kakutani concerning the shift transformation”, Ergodic theory, Proc. Intern. Sympos. (Tulane Univ., New Orleans, 1961), Academic Press, New York, 1963, 203–215 | MR | Zbl
[16] W. A. Veech, “Topological dynamics”, Bull. Amer. Math. Soc., 83:5 (1977), 775–830 | DOI | MR | Zbl
[17] K. Sigmund, “On dynamical systems with the specification property”, Trans. Amer. Math. Soc., 190 (1974), 285–299 | DOI | MR | Zbl
[18] H. Cajar, Billingsley dimension in probability spaces, Lecture Notes in Math., 892, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | DOI | MR | Zbl