Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354
Voir la notice de l'article provenant de la source Math-Net.Ru
For a dynamical system $\tau$ with ‘time’ $\mathbb Z^d$ and compact phase space $X$, we introduce three subsets of the space $\mathbb R^m$ related to a continuous function $f\colon X\to\mathbb R^m$: the set
of time means of $f$ and two sets of space means of $f$, namely those corresponding to all $\tau$-invariant probability measures and those corresponding to some equilibrium measures on $X$. The main results concern
topological properties of these sets of means and their mutual position.
Bibliography: 18 titles.
Keywords:
dynamical system, space mean, equilibrium mean, time mean, pressure.
@article{SM_2010_201_3_a1,
author = {B. M. Gurevich and A. A. Tempel'man},
title = {Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system},
journal = {Sbornik. Mathematics},
pages = {339--354},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/}
}
TY - JOUR AU - B. M. Gurevich AU - A. A. Tempel'man TI - Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system JO - Sbornik. Mathematics PY - 2010 SP - 339 EP - 354 VL - 201 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/ LA - en ID - SM_2010_201_3_a1 ER -
%0 Journal Article %A B. M. Gurevich %A A. A. Tempel'man %T Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system %J Sbornik. Mathematics %D 2010 %P 339-354 %V 201 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/ %G en %F SM_2010_201_3_a1
B. M. Gurevich; A. A. Tempel'man. Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/