Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354

Voir la notice de l'article provenant de la source Math-Net.Ru

For a dynamical system $\tau$ with ‘time’ $\mathbb Z^d$ and compact phase space $X$, we introduce three subsets of the space $\mathbb R^m$ related to a continuous function $f\colon X\to\mathbb R^m$: the set of time means of $f$ and two sets of space means of $f$, namely those corresponding to all $\tau$-invariant probability measures and those corresponding to some equilibrium measures on $X$. The main results concern topological properties of these sets of means and their mutual position. Bibliography: 18 titles.
Keywords: dynamical system, space mean, equilibrium mean, time mean, pressure.
@article{SM_2010_201_3_a1,
     author = {B. M. Gurevich and A. A. Tempel'man},
     title = {Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system},
     journal = {Sbornik. Mathematics},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/}
}
TY  - JOUR
AU  - B. M. Gurevich
AU  - A. A. Tempel'man
TI  - Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 339
EP  - 354
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/
LA  - en
ID  - SM_2010_201_3_a1
ER  - 
%0 Journal Article
%A B. M. Gurevich
%A A. A. Tempel'man
%T Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system
%J Sbornik. Mathematics
%D 2010
%P 339-354
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/
%G en
%F SM_2010_201_3_a1
B. M. Gurevich; A. A. Tempel'man. Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/