Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a dynamical system $\tau$ with ‘time’ $\mathbb Z^d$ and compact phase space $X$, we introduce three subsets of the space $\mathbb R^m$ related to a continuous function $f\colon X\to\mathbb R^m$: the set of time means of $f$ and two sets of space means of $f$, namely those corresponding to all $\tau$-invariant probability measures and those corresponding to some equilibrium measures on $X$. The main results concern topological properties of these sets of means and their mutual position. Bibliography: 18 titles.
Keywords: dynamical system, space mean, equilibrium mean, time mean, pressure.
@article{SM_2010_201_3_a1,
     author = {B. M. Gurevich and A. A. Tempel'man},
     title = {Time, space and equilibrium means of continuous vector functions on the phase space of a~dynamical system},
     journal = {Sbornik. Mathematics},
     pages = {339--354},
     year = {2010},
     volume = {201},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/}
}
TY  - JOUR
AU  - B. M. Gurevich
AU  - A. A. Tempel'man
TI  - Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 339
EP  - 354
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/
LA  - en
ID  - SM_2010_201_3_a1
ER  - 
%0 Journal Article
%A B. M. Gurevich
%A A. A. Tempel'man
%T Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system
%J Sbornik. Mathematics
%D 2010
%P 339-354
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/
%G en
%F SM_2010_201_3_a1
B. M. Gurevich; A. A. Tempel'man. Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a1/

[1] D. Ruelle, Thermodynamic formalism, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, MA, 1978 | MR | Zbl

[2] H.-O. Georgii, Gibbs measures and phase transitions, de Gruyter Stud. Math., 9, de Gruyter, Berlin, 1988 | MR | MR | Zbl

[3] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl | Zbl

[4] B. M. Gurevich, A. A. Tempelman, “Hausdorff dimension of sets of generic points for Gibbs measures”, J. Statist. Phys., 108:5–6 (2002), 1281–1301 | DOI | MR | Zbl

[5] B. M. Gurevich, A. A. Tempelman, “Markov approximation of homogeneous lattice random fields”, Probab. Theory Related Fields, 131:4 (2005), 519–527 | DOI | MR | Zbl

[6] B. M. Gurevich, A. A. Tempelman, “On sets of time and space averages for continuous functions on a configuration space”, Russian Math. Surveys, 58:2 (2003), 370–371 | DOI | MR | Zbl

[7] O. Jenkinson, “Rotation, entropy, and equilibrium states”, Trans. Amer. Math. Soc., 353:9 (2001), 3713–3739 | DOI | MR | Zbl

[8] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin–New York, 1985 | MR | Zbl

[9] A. Dold, Lectures on algebraic topol, Springer-Verlag, New York–Berlin, 1972 | MR | MR | Zbl

[10] A. A. Tempelman, “Multifractal analysis of ergodic averages: a generalization of Eggleston's theorem”, J. Dynam. Control Systems, 7:4 (2001), 535–551 | DOI | MR | Zbl

[11] F. Hofbauer, “Examples for the nonuniqueness of the equilibrium state”, Trans. Amer. Math. Soc., 228 (1977), 223–241 | DOI | MR | Zbl

[12] E. Olivier, “Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for $g$-measures”, Nonlinearity, 12:6 (1999), 1571–1585 | DOI | MR | Zbl

[13] P. Walters, “Ruelle's operator theorem and $g$-measures”, Trans. Amer. Math. Soc., 214 (1975), 375–387 | DOI | MR | Zbl

[14] F. Takens, E. Verbitskiy, “On the variational principle for the topological entropy of certain non-compact sets”, Ergodic Theory Dynam. Systems, 23:1 (2003), 317–348 | DOI | MR | Zbl

[15] J. C. Oxtoby, “On two theorems of Parthasarathy and Kakutani concerning the shift transformation”, Ergodic theory, Proc. Intern. Sympos. (Tulane Univ., New Orleans, 1961), Academic Press, New York, 1963, 203–215 | MR | Zbl

[16] W. A. Veech, “Topological dynamics”, Bull. Amer. Math. Soc., 83:5 (1977), 775–830 | DOI | MR | Zbl

[17] K. Sigmund, “On dynamical systems with the specification property”, Trans. Amer. Math. Soc., 190 (1974), 285–299 | DOI | MR | Zbl

[18] H. Cajar, Billingsley dimension in probability spaces, Lecture Notes in Math., 892, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | DOI | MR | Zbl