Elementary equivalence of Chevalley groups over local rings
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 321-337
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that (elementary) Chevalley groups over local rings with invertible 2 are elementarily equivalent if and only if their types and weight lattices coincide and the initial rings are elementarily equivalent.
Bibliography: 25 titles.
Keywords:
Chevalley groups, elementary equivalence, local rings.
@article{SM_2010_201_3_a0,
author = {E. I. Bunina},
title = {Elementary equivalence of {Chevalley} groups over local rings},
journal = {Sbornik. Mathematics},
pages = {321--337},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/}
}
E. I. Bunina. Elementary equivalence of Chevalley groups over local rings. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 321-337. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/