@article{SM_2010_201_3_a0,
author = {E. I. Bunina},
title = {Elementary equivalence of {Chevalley} groups over local rings},
journal = {Sbornik. Mathematics},
pages = {321--337},
year = {2010},
volume = {201},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/}
}
E. I. Bunina. Elementary equivalence of Chevalley groups over local rings. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 321-337. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/
[1] C. C. Chang, H. J. Keisler, Model theory, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | MR | Zbl
[2] A. I. Maltsev, “Ob elementarnykh svoistvakh lineinykh grupp”, Nekotorye problemy matematiki i mekhaniki, Novosibirsk, Izd-vo SO AN SSSR, 1961, 110–132 | MR | Zbl
[3] C. I. Beidar, A. V. Mikhalëv, “On Mal'cev's theorem on elementary equivalence of linear groups”, Proceedings of the International Conference on Algebra (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 29–35 | MR | Zbl
[4] E. I. Bunina, “Elementary equivalence of unitary linear groups over rings and skew fields”, Russian Math. Surveys, 53:2 (1998), 374–376 | DOI | MR | Zbl
[5] E. I. Bunina, “Elementary equivalence of Chevalley groups”, Russian Math. Surveys, 56:1 (2001), 152–153 | DOI | MR | Zbl
[6] E. I. Bunina, A. V. Mikhalev, “Combinatorial and logical aspects of linear groups and Chevalley groups”, Acta Appl. Math., 85:1–3 (2005), 57–74 | DOI | MR | Zbl
[7] E. I. Bunina, “Chevalley groups over fields and their elementary properties”, Russian Math. Surveys, 59:5 (2004), 952–953 | DOI | MR | Zbl
[8] E. I. Bunina, “Elementary properties of Chevalley groups over local rings”, Russian Math. Surveys, 61:2 (2006), 349–350 | DOI | MR | Zbl
[9] E. I. Bunina, “Elementary equivalence of Chevalley groups over fields”, J. Math. Sci. (N. Y.), 152:2 (2008), 155–190 | DOI | MR | Zbl
[10] E. I. Bunina, “Automorphisms of Chevalley groups of some types over local rings”, Russian Math. Surveys, 62:5 (2007), 983–984 | DOI | MR | Zbl
[11] E. I. Bunina, “Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings”, J. Math. Sci. (N. Y.), 155:6 (2008), 795–814 | DOI | MR | Zbl
[12] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl
[13] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | MR | MR | Zbl | Zbl
[14] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, CT, 1968 | MR | MR | Zbl
[15] C. Chevalley, “Certains schémas de groupes semi-simples”, Séminaire Bourbaki: Vol. 1960/1961, Exposés 205–222, Benjamin, New York–Amsterdam, 1966, 1–16 | MR | Zbl
[16] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings: I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl
[17] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[18] E. Abe, “Chevalley groups over local rings”, Tohoku Math. J. (2), 21:3 (1969), 474–494 | DOI | MR | Zbl
[19] M. R. Stein, “Surjective stability in dimension $0$ for $K^2$ and related functors”, Trans. Amer. Soc., 178 (1973), 165–191 | DOI | MR | Zbl
[20] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tohoku Math. J. (2), 28:2 (1976), 185–198 | DOI | MR | Zbl
[21] P. M. Cohn, “On the structure of the $GL_2$ of a ring”, Inst. Hautes Études Sci. Publ. Math., 30 (1966), 365–413 | MR | Zbl
[22] R. G. Swan, “Generators and relations for certain special linear groups”, Advances in Math., 6:1 (1971), 1–77 | DOI | MR | Zbl
[23] A. A. Suslin, “One theorem of Cohn”, J. Sov. Math., 17:2 (1981), 1801–1803 | DOI | MR | Zbl | Zbl
[24] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989, 1–17 | MR | Zbl
[25] E. Abe, “Automorphisms of Chevalley groups over commutative rings”, St. Petersburg Math. J., 5:2 (1993), 287–300 | MR | Zbl