Elementary equivalence of Chevalley groups over local rings
Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 321-337

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that (elementary) Chevalley groups over local rings with invertible 2 are elementarily equivalent if and only if their types and weight lattices coincide and the initial rings are elementarily equivalent. Bibliography: 25 titles.
Keywords: Chevalley groups, elementary equivalence, local rings.
@article{SM_2010_201_3_a0,
     author = {E. I. Bunina},
     title = {Elementary equivalence of {Chevalley} groups over local rings},
     journal = {Sbornik. Mathematics},
     pages = {321--337},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Elementary equivalence of Chevalley groups over local rings
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 321
EP  - 337
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/
LA  - en
ID  - SM_2010_201_3_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Elementary equivalence of Chevalley groups over local rings
%J Sbornik. Mathematics
%D 2010
%P 321-337
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/
%G en
%F SM_2010_201_3_a0
E. I. Bunina. Elementary equivalence of Chevalley groups over local rings. Sbornik. Mathematics, Tome 201 (2010) no. 3, pp. 321-337. http://geodesic.mathdoc.fr/item/SM_2010_201_3_a0/