Weighted composition operators between Bloch-type spaces in the polydisc
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 289-319
Voir la notice de l'article provenant de la source Math-Net.Ru
For $p>0$, let $\mathscr B^p(\mathbb D^n)$ denote the $p$-Bloch space on the unit polydisc $\mathbb D^n$ of $\mathbb C^n$ and $\varphi(z)=(\varphi_1(z),\dots,\varphi_n(z))$ a holomorphic self-map of
$\mathbb D^n$. We investigate the boundedness and compactness of the weighted composition
$uC_\varphi f(z)=u(z)f(\varphi(z))$ between $p$-Bloch space $\mathscr B^p(\mathbb D^n)$ (little $p$-Bloch space $\mathscr B^p_0(\mathbb D^n)$) and $q$-Bloch space $\mathscr B^q(\mathbb D^n)$ (little $q$-Bloch space $\mathscr B^q_0(\mathbb D^n)$). The most important result in the paper is that conditions for the compactness are different for the cases $p\in(0,1)$ and $p\geqslant1$, unlike for the case of the weighted operators on the unit disc.
Bibliography: 32 titles.
Keywords:
polydisc, weighted composition operator, boundedness, compactness.
Mots-clés : Bloch-type spaces
Mots-clés : Bloch-type spaces
@article{SM_2010_201_2_a4,
author = {S. Stevi\'c and R. Chen and Z. Zhou},
title = {Weighted composition operators between {Bloch-type} spaces in the polydisc},
journal = {Sbornik. Mathematics},
pages = {289--319},
publisher = {mathdoc},
volume = {201},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/}
}
TY - JOUR AU - S. Stević AU - R. Chen AU - Z. Zhou TI - Weighted composition operators between Bloch-type spaces in the polydisc JO - Sbornik. Mathematics PY - 2010 SP - 289 EP - 319 VL - 201 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/ LA - en ID - SM_2010_201_2_a4 ER -
S. Stević; R. Chen; Z. Zhou. Weighted composition operators between Bloch-type spaces in the polydisc. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 289-319. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/