Weighted composition operators between Bloch-type spaces in the polydisc
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 289-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $p>0$, let $\mathscr B^p(\mathbb D^n)$ denote the $p$-Bloch space on the unit polydisc $\mathbb D^n$ of $\mathbb C^n$ and $\varphi(z)=(\varphi_1(z),\dots,\varphi_n(z))$ a holomorphic self-map of $\mathbb D^n$. We investigate the boundedness and compactness of the weighted composition $uC_\varphi f(z)=u(z)f(\varphi(z))$ between $p$-Bloch space $\mathscr B^p(\mathbb D^n)$ (little $p$-Bloch space $\mathscr B^p_0(\mathbb D^n)$) and $q$-Bloch space $\mathscr B^q(\mathbb D^n)$ (little $q$-Bloch space $\mathscr B^q_0(\mathbb D^n)$). The most important result in the paper is that conditions for the compactness are different for the cases $p\in(0,1)$ and $p\geqslant1$, unlike for the case of the weighted operators on the unit disc. Bibliography: 32 titles.
Keywords: polydisc, weighted composition operator, boundedness, compactness.
Mots-clés : Bloch-type spaces
@article{SM_2010_201_2_a4,
     author = {S. Stevi\'c and R. Chen and Z. Zhou},
     title = {Weighted composition operators between {Bloch-type} spaces in the polydisc},
     journal = {Sbornik. Mathematics},
     pages = {289--319},
     year = {2010},
     volume = {201},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/}
}
TY  - JOUR
AU  - S. Stević
AU  - R. Chen
AU  - Z. Zhou
TI  - Weighted composition operators between Bloch-type spaces in the polydisc
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 289
EP  - 319
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/
LA  - en
ID  - SM_2010_201_2_a4
ER  - 
%0 Journal Article
%A S. Stević
%A R. Chen
%A Z. Zhou
%T Weighted composition operators between Bloch-type spaces in the polydisc
%J Sbornik. Mathematics
%D 2010
%P 289-319
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/
%G en
%F SM_2010_201_2_a4
S. Stević; R. Chen; Z. Zhou. Weighted composition operators between Bloch-type spaces in the polydisc. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 289-319. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a4/

[1] R. M. Timoney, “Bloch functions in several complex variables. I”, Bull. London Math. Soc., 12:4 (1980), 241–267 | DOI | MR | Zbl

[2] R. M. Timoney, “Bloch functions in several complex variables. II”, J. Reine Angew. Math., 319 (1980), 1–22 | DOI | MR | Zbl

[3] K. Zhu, Operator theory in function spaces, Monogr. Textbooks Pure Appl. Math., 139, Marcel Dekker, New York, 1990 | MR | Zbl

[4] M. D. Contreras, A. G. Hernandez-Diaz, “Weighted composition operators in weighted Banach spaces of analytic functions”, J. Austral. Math. Soc. Ser. A, 69:1 (2000), 41–46 | DOI | MR | Zbl

[5] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press, Boca Raton, Fl, 1995 | MR | Zbl

[6] B. D. MacCluer, R. Zhao, “Essential norms of weighted composition operators between Bloch-type spaces”, Rocky Mountain J. Math., 33:4 (2003), 1437–1458 | DOI | MR | Zbl

[7] K. M. Madigan, “Composition operators on analytic Lipschitz spaces”, Proc. Amer. Math. Soc., 119:2 (1993), 465–473 | DOI | MR | Zbl

[8] K. Madigan, A. Matheson, “Compact composition operators on the Bloch space”, Trans. Amer. Math. Soc., 347:7 (1995), 2679–2687 | DOI | MR | Zbl

[9] A. Montes-Rodriguez, “Weighted composition operators on weighted Banach spaces of analytic functions”, J. London Math. Soc. (2), 61:3 (2000), 872–884 | DOI | MR | Zbl

[10] Sh. Ye, “Weighted composition operator between the little $\alpha$-Bloch spaces and the logarithmic Bloch space”, J. Comput. Anal. Appl., 10:2 (2008), 243–252 | MR | Zbl

[11] S. Li, S. Stević, “Generalized composition operators on Zygmund spaces and Bloch type spaces”, J. Math. Anal. Appl., 338:2 (2008), 1282–1295 | DOI | MR | Zbl

[12] S. Li, S. Stević, “Products of composition and integral type operators from $H^\infty$ to the Bloch space”, Complex Var. Elliptic Equ., 53:5 (2008), 463–474 | DOI | MR | Zbl

[13] S. Li, S. Stević, “Products of Volterra type operator and composition operator from $H^\infty$ and Bloch spaces to Zygmund spaces”, J. Math. Anal. Appl., 345:1 (2008), 40–52 | DOI | MR | Zbl

[14] X. Zhu, “Generalized weighted composition operators from Bloch type spaces to weighted Bergman spaces”, Indian J. Math., 49:2 (2007), 139–150 | MR | Zbl

[15] X. Zhu, “Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces”, Integral Transforms Spec. Funct., 18:3 (2007), 223–231 | DOI | MR | Zbl

[16] S. Ohno, K. Stroethoff, R. Zhao, “Weighted composition operators between Bloch-type spaces”, Rocky Mountain J. Math., 33:1 (2003), 191–215 | DOI | MR | Zbl

[17] Z. Zhou, J. Shi, “Compact composition operators on the Bloch space in polydiscs”, Sci. China Ser. A, 44:3 (2001), 286–291 | DOI | MR | Zbl

[18] Z. Zhou, “Composition operators on the Lipschitz space in polydiscs”, Sci. China Ser. A, 46:1 (2003), 33–38 | DOI | MR

[19] S. Stević, “Composition Operators between $H^\infty$ and $\alpha$-Bloch spaces on the polydisc”, Z. Anal. Anwend., 25:4 (2006), 457–466 | DOI | MR | Zbl

[20] D. D. Clahane, S. Stević, “Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball”, J. Inequal. Appl., 2006, ID 61018 | DOI | MR | Zbl

[21] L. Jiang, C. Ouyang, “Cyclic behavior of linear fractional composition operators in the unit ball of ${\mathbb C}^n$”, J. Math. Anal. Appl., 341:1 (2008), 601–612 | DOI | MR | Zbl

[22] S. Li, S. Stević, “Weighted composition operators from Bloch space to $H^\infty$ on the polydisc”, Numer. Funct. Anal. Optim., 28:7–8 (2007), 911–925 | DOI | MR | Zbl

[23] S. Li, S. Stević, “Weighted composition operators from Bergman-type spaces into Bloch spaces”, Proc. Indian Acad. Sci. Math. Sci., 117:3 (2007), 371–385 | DOI | MR | Zbl

[24] S. Li, S. Stević, “Weighted composition operators from $H^\infty$ to the Bloch space on the polydisc”, Abstr. Appl. Anal., 2007, ID 48478 | DOI | MR | Zbl

[25] S. Li, S. Stević, “Weighted composition operators between $H^\infty$ and $\alpha$-Bloch spaces in the unit ball”, Taiwanese J. Math., 12:7 (2008), 1625–1639 | MR | Zbl

[26] J. Shi, L. Luo, “Composition operators on the Bloch space of several complex variables”, Acta Math. Sin. (Engl. Ser.), 16:1 (2000), 85–98 | DOI | MR | Zbl

[27] S. Stević, “Weighted composition operators between mixed norm spaces and $H^\infty_{\alpha}$ spaces in the unit ball”, J. Inequal. Appl., 2007 (2007), ID 28629 | DOI | MR | Zbl

[28] S. Stević, “Norm of weighted composition operators from Bloch space to $H^\infty_\mu$ on the unit ball”, Ars. Combin., 88 (2008), 125–127 | MR

[29] S.-I. Ueki, L. Luo, “Compact weighted composition operators and multiplication operators between Hardy spaces”, Abstr. Appl. Anal., 2008, ID 196498 | DOI | MR | Zbl

[30] Z. Zhou, J. Shi, “Composition operators on the Bloch space in polydiscs”, Complex Variables Theory Appl., 46:1 (2001), 73–88 | MR | Zbl

[31] G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals. II”, Math. Z., 34:1 (1932), 403–439 | DOI | MR | Zbl

[32] S. Stević, “On Lipschitz and $\alpha$-Bloch spaces on the unit polydisc”, Studia Sci. Math. Hung., 45:3 (2008), 361–378 | Zbl