The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 253-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approximation properties of the $X$-greedy algorithm in the space $L_p(0,1)$ are studied. For $1 estimates for the rate of convergence of the $X$-greedy algorithm with respect to the Haar system are obtained that are close to optimal. Bibliography: 18 titles.
Keywords: greedy algorithms, $m$-term approximations, the Haar system, rate of convergence.
@article{SM_2010_201_2_a3,
     author = {E. D. Livshits},
     title = {The convergence of the greedy algorithm with respect to the {Haar} system in the space $L_p(0,1)$},
     journal = {Sbornik. Mathematics},
     pages = {253--288},
     year = {2010},
     volume = {201},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 253
EP  - 288
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/
LA  - en
ID  - SM_2010_201_2_a3
ER  - 
%0 Journal Article
%A E. D. Livshits
%T The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
%J Sbornik. Mathematics
%D 2010
%P 253-288
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/
%G en
%F SM_2010_201_2_a3
E. D. Livshits. The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 253-288. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/

[1] J. H. Friedman, W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | DOI | MR

[2] S. G. Mallat, Zh. Zhang, “Matching pursuits with time-frequency dictionaries”, IEEE Trans. Signal Process., 41:12 (1993), 3397–3415 | DOI | Zbl

[3] E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen I. Teil: Entwicklung willkurlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63:4 (1907), 433–476 | DOI | MR | Zbl

[4] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl

[5] V. N. Temlyakov, “Greedy approximation”, Acta Numer., 17 (2008), 235–409 | DOI | MR | Zbl

[6] E. D. Livshits, “Optimality of the greedy algorithm for some function classes”, Sb. Math., 198:5 (2007), 691–709 | DOI | MR | Zbl

[7] S. J. Dilworth, D. Kutzarova, V. N. Temlyakov, “Convergence of some greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 8:5 (2002), 489–506 | DOI | MR | Zbl

[8] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[9] V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292 | DOI | MR | Zbl

[10] V. N. Temlyakov, “Relaxation in greedy approximation”, Constr. Approx., 28:1 (2008), 1–25 | DOI | MR | Zbl

[11] V. N. Temlyakov, “Nonlinear methods of approximation”, IMI-preprint series, 2001, no. 9, 1–58

[12] V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[13] M. Ganichev, N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95 | DOI | MR | Zbl

[14] E. D. Livshits, “Convergence of greedy algorithms in Banach spaces”, Math. Notes, 73:3–4 (2003), 342–358 | DOI | MR | Zbl

[15] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[16] T. P. Lukashenko, “Properties of orthorecursive expansions over nonorthogonal systems”, Moscow Univ. Math. Bull., 56:1 (2001), 5–9 | MR | Zbl

[17] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl

[18] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | DOI | MR | MR | Zbl | Zbl