The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 253-288

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximation properties of the $X$-greedy algorithm in the space $L_p(0,1)$ are studied. For $1$ estimates for the rate of convergence of the $X$-greedy algorithm with respect to the Haar system are obtained that are close to optimal. Bibliography: 18 titles.
Keywords: greedy algorithms, $m$-term approximations, the Haar system, rate of convergence.
@article{SM_2010_201_2_a3,
     author = {E. D. Livshits},
     title = {The convergence of the greedy algorithm with respect to the {Haar} system in the space $L_p(0,1)$},
     journal = {Sbornik. Mathematics},
     pages = {253--288},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 253
EP  - 288
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/
LA  - en
ID  - SM_2010_201_2_a3
ER  - 
%0 Journal Article
%A E. D. Livshits
%T The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$
%J Sbornik. Mathematics
%D 2010
%P 253-288
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/
%G en
%F SM_2010_201_2_a3
E. D. Livshits. The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 253-288. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a3/