Codimensions of generalized polynomial identities
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 235-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for every finite-dimensional associative algebra $A$ over a field of characteristic zero there are numbers $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $gc_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=PI\exp(A)\in\mathbb Z_+$. Thus, Amitsur's and Regev's conjectures hold for the codimensions $gc_n(A)$ of the generalized polynomial identities. Bibliography: 6 titles.
Keywords: associative algebra, generalized polynomial identity, asymptotic behaviour of codimensions, $PI$-exponent, representation of a symmetric group.
@article{SM_2010_201_2_a2,
     author = {A. S. Gordienko},
     title = {Codimensions of generalized polynomial identities},
     journal = {Sbornik. Mathematics},
     pages = {235--251},
     year = {2010},
     volume = {201},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/}
}
TY  - JOUR
AU  - A. S. Gordienko
TI  - Codimensions of generalized polynomial identities
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 235
EP  - 251
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/
LA  - en
ID  - SM_2010_201_2_a2
ER  - 
%0 Journal Article
%A A. S. Gordienko
%T Codimensions of generalized polynomial identities
%J Sbornik. Mathematics
%D 2010
%P 235-251
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/
%G en
%F SM_2010_201_2_a2
A. S. Gordienko. Codimensions of generalized polynomial identities. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 235-251. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/

[1] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[2] A. Berele, A. Regev, “Asymptotic behaviour of codimensions of p. i. algebras satisfying Capelli identities”, Trans. Amer. Math. Soc., 360:10 (2008), 5155–5172 | DOI | MR | Zbl

[3] V. Drensky, “Relations for the cocharacter sequences of $T$-ideals”, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 285–300 | MR | Zbl

[4] A. S. Gordienko, “The Regev conjecture and cocharacters for identities of associative algebras of PI-exponent 1 and 2”, Math. Notes, 83:5–6 (2008), 744–752 | DOI | MR | Zbl

[5] K. I. Beidar, W. S. Martindale, A. V. Mikhalev, Rings with generalized identities, Monogr. Textbooks Pure Appl. Math., 196, Dekker, New York, 1996 | MR | Zbl

[6] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Israel J. Math., 47:2–3 (1984), 246–250 | DOI | MR | Zbl