Codimensions of generalized polynomial identities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 235-251
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for every finite-dimensional associative algebra $A$ over a field of characteristic zero there are numbers $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $gc_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=PI\exp(A)\in\mathbb Z_+$. Thus, Amitsur's and Regev's conjectures hold for the codimensions $gc_n(A)$ of the generalized polynomial identities.
Bibliography: 6 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
associative algebra, generalized polynomial identity, asymptotic behaviour of codimensions, $PI$-exponent,
representation of a symmetric group.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_2_a2,
     author = {A. S. Gordienko},
     title = {Codimensions of generalized polynomial identities},
     journal = {Sbornik. Mathematics},
     pages = {235--251},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/}
}
                      
                      
                    A. S. Gordienko. Codimensions of generalized polynomial identities. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 235-251. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a2/
