Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants
Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 183-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers Hermite-Padé approximants to systems of Markov functions defined by means of directed graphs. The minimization problem for the energy functional is investigated for a vector measure whose components are related by a given interaction matrix and supported in some fixed system of intervals. The weak asymptotics of the approximants are obtained in terms of the solution of this problem. The defining graph is allowed to contain undirected cycles, so the minimization problem in question is considered within the class of measures whose masses are not fixed, but allowed to ‘flow’ between intervals. Strong asymptotic formulae are also obtained. The basic tool that is used is an algebraic Riemann surface defined by means of the supports of the components of the extremal measure. The strong asymptotic formulae involve standard functions on this Riemann surface and solutions of some boundary value problems on it. The proof depends upon an asymptotic solution of the corresponding matrix Riemann-Hilbert problem. Bibliography: 40 titles.
Keywords: weak and strong asymptotics, extremal equilibrium problems for a system of measures, matrix Riemann-Hilbert problem.
Mots-clés : Hermite-Padé approximants, multiple orthogonal polynomials
@article{SM_2010_201_2_a1,
     author = {A. I. Aptekarev and V. G. Lysov},
     title = {Systems of {Markov} functions generated by graphs and the asymptotics of their {Hermite-Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {183--234},
     year = {2010},
     volume = {201},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - V. G. Lysov
TI  - Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 183
EP  - 234
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/
LA  - en
ID  - SM_2010_201_2_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A V. G. Lysov
%T Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants
%J Sbornik. Mathematics
%D 2010
%P 183-234
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/
%G en
%F SM_2010_201_2_a1
A. I. Aptekarev; V. G. Lysov. Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 183-234. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/

[1] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | Zbl

[2] Ch. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. Paris, 77 (1873), 18–24; 74–79; 226–233 | Zbl

[3] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | MR | Zbl

[4] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence”, Continued fractions: from analytic number theory to constructive approximation (University of Missouri–Columbia, Columbia, MO, USA, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | MR | Zbl

[5] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007 | Zbl

[6] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl

[7] A. Aptekarev, V. Kaliaguine, “Complex rational approximation and difference operators”, Proceedings of the 3rd international conference on functional analysis and approximation theory. Vol. I (Acquafredda di Maratea (Potenza), Italy, 1996), Rend. Circ. Mat. Palermo (2) Suppl., 52, Circolo Matematico di Palermo, Palermo, 1998, 3–21 | MR | Zbl

[8] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[9] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl

[10] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[11] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. and Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl

[12] A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris, 168 (1919), 262–265 | Zbl

[13] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl

[14] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin-systems. I, II”, Acta Sci. Math. (Szeged), 60:1–2 (1995), 245–263 | MR | Zbl

[15] U. Fidalgo Prieto, G. López Lagomasino, “On perfect Nikishin systems”, Comput. Methods Funct. Theory, 2:2 (2002), 415–426 | MR | Zbl

[16] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 157, Nauka, M., 1981, 31–48 | MR | Zbl

[17] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR-Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl

[18] Zh. Bustamante, G. L. Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl

[19] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[20] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl

[21] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | MR | Zbl

[22] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[23] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0).”, Int. Math. Res. Pap. IMRP, 2008, Art. ID rpm007 | DOI | MR | Zbl

[24] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[25] C. L. Siegel, Topics in complex function theory, Vol. I: Elliptic functions and uniformization theory, Wiley, New York–London–Sydney, 1969 ; Vol. II: Automorphic functions and Abelian integrals, Wiley, New York, 1971 | MR | Zbl | MR | Zbl

[26] A. I. Aptekarev, V. A. Kalyagin, Asimptoticheskoe povedenie kornya $n$-oi stepeni mnogochlenov sovmestnoi ortogonalnosti i algebraicheskie funktsii, Preprint IPM im. M. V. Keldyshy RAN, 60, 1986 | MR

[27] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl

[28] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, GITTL, M.–L., 1948 | MR

[29] E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl | Zbl

[30] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, New York; Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[31] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[32] L. C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, Philadelphia–London–Toronto, ON, 1969 | MR | MR | Zbl | Zbl

[33] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[34] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions (Tempe, AZ, USA, 2000), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl

[35] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[36] A. I. Aptekarev, Analysis of the matrix Riemann–Hilbert problems for the case of higher genus and asymptotics of polynomials orthogonal on a system of intervals, Preprint No28 IPM im. M. V. Keldysha RAN, 2008, 23 pp.; http://www.keldysh.ru/papers/2008/source/prep2008_28.pdf

[37] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, “New results on the equilibrium measure for logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95:3 (1998), 388–475 | DOI | MR | Zbl

[38] P. Deift, T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[39] A. B. J. Kuijlaars, K. T-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl

[40] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl