Mots-clés : Hermite-Padé approximants, multiple orthogonal polynomials
@article{SM_2010_201_2_a1,
author = {A. I. Aptekarev and V. G. Lysov},
title = {Systems of {Markov} functions generated by graphs and the asymptotics of their {Hermite-Pad\'e} approximants},
journal = {Sbornik. Mathematics},
pages = {183--234},
year = {2010},
volume = {201},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/}
}
TY - JOUR AU - A. I. Aptekarev AU - V. G. Lysov TI - Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants JO - Sbornik. Mathematics PY - 2010 SP - 183 EP - 234 VL - 201 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/ LA - en ID - SM_2010_201_2_a1 ER -
A. I. Aptekarev; V. G. Lysov. Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 183-234. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a1/
[1] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | Zbl
[2] Ch. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. Paris, 77 (1873), 18–24; 74–79; 226–233 | Zbl
[3] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | MR | Zbl
[4] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence”, Continued fractions: from analytic number theory to constructive approximation (University of Missouri–Columbia, Columbia, MO, USA, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | MR | Zbl
[5] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007 | Zbl
[6] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl
[7] A. Aptekarev, V. Kaliaguine, “Complex rational approximation and difference operators”, Proceedings of the 3rd international conference on functional analysis and approximation theory. Vol. I (Acquafredda di Maratea (Potenza), Italy, 1996), Rend. Circ. Mat. Palermo (2) Suppl., 52, Circolo Matematico di Palermo, Palermo, 1998, 3–21 | MR | Zbl
[8] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[9] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl
[10] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[11] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. and Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl
[12] A. Angelesco, “Sur deux extensions des fractions continues algébriques”, C. R. Acad. Sci. Paris, 168 (1919), 262–265 | Zbl
[13] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl
[14] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin-systems. I, II”, Acta Sci. Math. (Szeged), 60:1–2 (1995), 245–263 | MR | Zbl
[15] U. Fidalgo Prieto, G. López Lagomasino, “On perfect Nikishin systems”, Comput. Methods Funct. Theory, 2:2 (2002), 415–426 | MR | Zbl
[16] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 157, Nauka, M., 1981, 31–48 | MR | Zbl
[17] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR-Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl
[18] Zh. Bustamante, G. L. Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl
[19] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[20] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl
[21] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | MR | Zbl
[22] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[23] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0).”, Int. Math. Res. Pap. IMRP, 2008, Art. ID rpm007 | DOI | MR | Zbl
[24] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl
[25] C. L. Siegel, Topics in complex function theory, Vol. I: Elliptic functions and uniformization theory, Wiley, New York–London–Sydney, 1969 ; Vol. II: Automorphic functions and Abelian integrals, Wiley, New York, 1971 | MR | Zbl | MR | Zbl
[26] A. I. Aptekarev, V. A. Kalyagin, Asimptoticheskoe povedenie kornya $n$-oi stepeni mnogochlenov sovmestnoi ortogonalnosti i algebraicheskie funktsii, Preprint IPM im. M. V. Keldyshy RAN, 60, 1986 | MR
[27] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[28] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, GITTL, M.–L., 1948 | MR
[29] E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl | Zbl
[30] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York University, New York; Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[31] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[32] L. C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, Philadelphia–London–Toronto, ON, 1969 | MR | MR | Zbl | Zbl
[33] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[34] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions (Tempe, AZ, USA, 2000), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl
[35] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[36] A. I. Aptekarev, Analysis of the matrix Riemann–Hilbert problems for the case of higher genus and asymptotics of polynomials orthogonal on a system of intervals, Preprint No28 IPM im. M. V. Keldysha RAN, 2008, 23 pp.; http://www.keldysh.ru/papers/2008/source/prep2008_28.pdf
[37] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, “New results on the equilibrium measure for logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95:3 (1998), 388–475 | DOI | MR | Zbl
[38] P. Deift, T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[39] A. B. J. Kuijlaars, K. T-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl
[40] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl