Mots-clés : equivariant compactification.
@article{SM_2010_201_2_a0,
author = {S. M. Ageev and D. Repov\v{s}},
title = {On extending actions of groups},
journal = {Sbornik. Mathematics},
pages = {159--182},
year = {2010},
volume = {201},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_2_a0/}
}
S. M. Ageev; D. Repovš. On extending actions of groups. Sbornik. Mathematics, Tome 201 (2010) no. 2, pp. 159-182. http://geodesic.mathdoc.fr/item/SM_2010_201_2_a0/
[1] S. M. Ageev, D. Repovš, E. V. Ščepin, “The extension problem for complete $UV^n$-preimages”, Tsukuba J. Math., 23:1 (1999), 97–111 | MR | Zbl
[2] V. V. Fedorchuk, “Extension of fiberings”, Moscow Univ. Math. Bull., 1985, no. 40, 92–95 | MR | Zbl
[3] S. M. Ageev, “Extensor properties of orbit spaces and the problem of continuation of an action”, Moscow Univ. Math. Bull., 49:1, 9–12 | MR | Zbl
[4] S. M. Ageev, “Zadacha o prodolzhenii deistviya i ekstenzornye svoistva prostranstv orbit”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1994, no. 6, 80
[5] S. A. Antonyan, “Retraction properties of an orbit space”, Math. USSR-Sb., 65:2 (1990), 305–321 | DOI | MR | Zbl
[6] J. W. Jaworowski, “Symmetric products of ANR's associated with a permutation group”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 649–651 | MR | Zbl
[7] S. M. Ageev, D. Repovš, “The Jaworowski method in the problem of the preservation of extensor properties by the orbit functor”, Math. Notes, 71:3–4 (2002), 428–431 | DOI | MR | Zbl
[8] S. M. Ageev, “On extending the action”, Mosc. Univ. Math. Bull., 47:5 (1992), 17–19 | MR | Zbl
[9] S. M. Ageev, “On a problem of Zambakhidze–Smirnov”, Math. Notes, 58:1 (1995), 679–684 | DOI | MR | Zbl
[10] R. Cauty, “Une généralisation du théorème de Borsuk–Whitehead–Hanner aux espaces stratifiables”, C. R. Acad. Sci. Paris Sér. A-B, 275:4 (1972), 271–274 | MR | Zbl
[11] M. Murayama, “On $G$-ANR's and their $G$-homotopy types”, Osaka J. Math., 20:3 (1983), 479–512 | MR | Zbl
[12] H. Torunczyk, J. E. West, “The fine structure of $S^1/S^1$; a $Q$-manifold hyperspace localization of the integers”, Proceedings of the International Conference on Geometric Topology (Warsawa, 1978), PWN, Warsaw, 1980, 439–449 | MR | Zbl
[13] G. E. Bredon, Introduction to compact transformation groups, 46, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl
[14] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin, 1979 | DOI | MR | MR | Zbl | Zbl
[15] T. Matumoto, “Equivariant $K$-theory and Fredholm operators”, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 18 (1971), 109–125 | MR | Zbl
[16] Ch. N. Maxwell, “Homomorphisms of topological transformation groups into function spaces”, Duke Math. J., 33:3 (1966), 567–574 | DOI | MR | Zbl
[17] C. H. Dowker, “On a theorem of Hanner”, Ark. Mat., 2:4 (1952), 307–313 | DOI | MR | Zbl
[18] R. S. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 1960, no. 36 | MR | Zbl
[19] R. Engelking, General topology, PWN, Warsawa, 1977 | MR | MR | Zbl
[20] L. S. Pontryagin, Topological groups, Gordon and Breach, New York–London–Paris, 1966 | MR | MR | Zbl | Zbl
[21] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto, ON–London, 1966 | MR | MR | Zbl | Zbl
[22] J. Szenthe, “On the topological characterization of transitive Lie group actions”, Acta Sci. Math. (Szeged), 36:3–4 (1974), 323–344 | MR | Zbl
[23] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR | Zbl
[24] G. Villalobos, “Inversion of the theorem on the existence of slices”, Moscow Univ. Math. Bull., 55:1 (2000), 26–29
[25] “The equivariant theorem of Dugundji”, Russian Math. Surveys, 45:5 (1990), 219–220 | DOI | MR | Zbl
[26] H. Abels, “A universal proper $G$-space”, Math. Z., 159:2 (1978), 143–158 | DOI | MR | Zbl
[27] C. J. R. Borges, “On stratifiable spaces”, Pacif. J. Math., 17:1 (1966), 1–16 | MR | Zbl