On complete degenerations of surfaces with ordinary singularities in $\mathbb P^3$
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 129-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the problem of the existence of degenerations of surfaces in $\mathbb P^3$ with ordinary singularities into plane arrangements in general position. Bibliography: 14 titles.
Keywords: surfaces with ordinary singularities, complete degenerations.
@article{SM_2010_201_1_a5,
     author = {V. S. Kulikov and Vik. S. Kulikov},
     title = {On complete degenerations of surfaces with ordinary singularities in~$\mathbb P^3$},
     journal = {Sbornik. Mathematics},
     pages = {129--158},
     year = {2010},
     volume = {201},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a5/}
}
TY  - JOUR
AU  - V. S. Kulikov
AU  - Vik. S. Kulikov
TI  - On complete degenerations of surfaces with ordinary singularities in $\mathbb P^3$
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 129
EP  - 158
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a5/
LA  - en
ID  - SM_2010_201_1_a5
ER  - 
%0 Journal Article
%A V. S. Kulikov
%A Vik. S. Kulikov
%T On complete degenerations of surfaces with ordinary singularities in $\mathbb P^3$
%J Sbornik. Mathematics
%D 2010
%P 129-158
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a5/
%G en
%F SM_2010_201_1_a5
V. S. Kulikov; Vik. S. Kulikov. On complete degenerations of surfaces with ordinary singularities in $\mathbb P^3$. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 129-158. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a5/

[1] F. Severi, Vorlesungen über algebraische Geometrie, Teubner, Leipzig, 1921 | MR | Zbl

[2] J. Harris, “On the Severi problem”, Invent. Math., 84:3 (1986), 445–461 | DOI | MR | Zbl

[3] G.-M. Greuel, Ch. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monogr. Math., Springer-Verlag, Berlin, 2007 | MR | Zbl

[4] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., 603, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | DOI | MR | Zbl

[5] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, On degenerations of surfaces, arXiv: math/0310009v2

[6] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, “On the geometric genus of reducible surfaces and degenerations of surface to unions of planes”, The Fano conference (Torino, Italy, 2002), Univ. Torino, Turin, 2004, 277–312 | MR | Zbl

[7] R.-O. Buchweitz, G.-M. Greuel, “The Milnor number and deformations of complex curve singularities”, Invent. Math., 58:3 (1980), 241–281 | DOI | MR | Zbl

[8] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[9] Vik. S. Kulikov, “On Chisini's conjecture”, Izv. Math., 63:6 (1999), 1139–1170 | DOI | MR | Zbl

[10] Vik. S. Kulikov, “On the structure of the fundamental group of the complement of algebraic curves in $\mathbf C^2$”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 443–454 | DOI | MR | Zbl

[11] C. Ciliberto, F. Flamini, On the branch curve of a general projection of a surface to a plane, arXiv: math/0811.0467

[12] R. Hartshorne, “Families of curves in $\mathbf P^3$ and Zeuthen's problem”, Mem. Amer. Math. Soc., 130 (1997 No617) | MR | Zbl

[13] Vik. S. Kulikov, “On Chisini's conjecture. II”, Izv. Math., 72:5 (2008), 901–913 | DOI | MR | Zbl

[14] G. Gotzmann, The irreducible components of $\mathrm{Hilb}^{4n}(\mathbb P^3)$, arXiv: math/0811.3160