Topological transformation groups and Dugundji compacta
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 103-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The presence of an algebraic structure on a space, which is compatible with its topology, in many cases imposes very strong restrictions on the properties of the space itself. Conditions are found which must be satisfied by the actions in order for the phase space to be a $d$-space (Dugundji compactum). This investigation allows the range of $G$-spaces that are $d$-spaces (Dugundji compacta) to be substantially widened. It is shown that all the cases known to the authors where a $G$-space (a topological group, one of its quotient spaces) is a $d$-space can be realized using equivariant maps. Bibliography: 39 titles.
Keywords: $G$-space, topological group, $d$-space, uniform structure.
Mots-clés : Dugundji compactum
@article{SM_2010_201_1_a4,
     author = {K. L. Kozlov and V. A. Chatyrko},
     title = {Topological transformation groups and {Dugundji} compacta},
     journal = {Sbornik. Mathematics},
     pages = {103--128},
     year = {2010},
     volume = {201},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/}
}
TY  - JOUR
AU  - K. L. Kozlov
AU  - V. A. Chatyrko
TI  - Topological transformation groups and Dugundji compacta
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 103
EP  - 128
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/
LA  - en
ID  - SM_2010_201_1_a4
ER  - 
%0 Journal Article
%A K. L. Kozlov
%A V. A. Chatyrko
%T Topological transformation groups and Dugundji compacta
%J Sbornik. Mathematics
%D 2010
%P 103-128
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/
%G en
%F SM_2010_201_1_a4
K. L. Kozlov; V. A. Chatyrko. Topological transformation groups and Dugundji compacta. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 103-128. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/

[1] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.), 58, 1968 | MR | MR | Zbl | Zbl

[2] R. Haydon, “On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE $(0-\mathrm{dim})$”, Studia Math., 52:1 (1974), 23–31 | MR | Zbl

[3] E. V. Shchepin, “Topology of limit spaces of uncountable inverse spectra”, Russian Math. Surveys, 31:5 (1976), 155–191 | DOI | MR | Zbl | Zbl

[4] E. V. Ščepin, “On $\varkappa$-metrizable space”, Math. USSR-Izv., 14:2 (1980), 407–440 | DOI | MR | Zbl

[5] E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71 | DOI | MR | Zbl | Zbl

[6] V. V. Uspenskiǐ, “Topological groups and Dugundji compacta”, Math. USSR-Sb., 67:2 (1990), 555–580 | DOI | MR | Zbl | Zbl

[7] L. N. Ivanovskii, “Ob odnoi gipoteze P. S. Aleksandrova”, Dokl. AN SSSR, 123:5 (1958), 785–786 | MR | Zbl

[8] V. I. Kuzminov, “O gipoteze P. S. Aleksandrova v teorii topologicheskikh grupp”, Dokl. AN SSSR, 125:4 (1959), 727–729 | MR | Zbl

[9] M. M. Choban, “Topologicheskoe stroenie podmnozhestv topologicheskikh grupp i ikh faktorprostranstv”, Mat. issledovaniya, 8, no. 4, Shtiintsa, Kishinev, 1973, 111–156

[10] B. A. Pasynkov, “On spaces with a compact group of transformations”, Soviet Math. Dokl., 17:6 (1976), 1522–1526 | MR | Zbl

[11] A. V. Arkhangel'skii, “Topological homogeneity. Topological groups and their continuous images”, Russian Math. Surveys, 42:2 (1987), 83–131 | DOI | MR | Zbl

[12] M. M. Choban, “Reduktsionnye teoremy o suschestvovanii neperyvnykh sechenii. Secheniya nad podmnozhestvami faktorprostranstv topologicheskikh grupp”, Topologicheskie struktury i algebraicheskie sistemy, Shtiintsa, Kishinev, 1977, 117–163

[13] S. Hernández, M. Sanchis, “Dugundji spaces in the coset space $G/H$”, Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, 262–268 | DOI | MR | Zbl

[14] A. V. Arkhangelskii, “Classes of topological groups”, Russian Math. Surveys, 36:3 (1981), 151–174 | DOI | MR | Zbl | Zbl

[15] V. V. Uspenskii, “Compact factor spaces of topological groups and Haydon spectra”, Math. Notes, 42:4 (1987), 827–831 | DOI | MR | Zbl | Zbl

[16] I. I. Guran, “On topological groups close to being Lindelöf”, Soviet Math. Dokl., 23:1 (1981), 173–175 | MR | Zbl

[17] S. A. Antonyan, Yu. M. Smirnov, “Universal objects and compact extensions for topological transformation groups”, Soviet Math. Dokl., 23:2 (1981), 279–284 | MR | Zbl

[18] R. S. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 1960, no. 36, 1–72 | MR | Zbl

[19] J. de Vries, Topological transformation groups. 1. A categorical approach, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl

[20] J. de Vries, “On the existence of $G$-compactifications”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:3 (1978), 275–280 | MR | Zbl

[21] K. L. Kozlov, V. A. Chatyrko, “On $G$-compactifications”, Math. Notes, 78:5–6 (2005), 649–661 | DOI | MR | Zbl

[22] R. Engelking, General topology, Polish Scientific Publ., Warsaw, 1977 | MR | MR | Zbl

[23] J. R. Isbell, Uniform spaces, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[24] J. van Mill, “Homogeneous spaces and transitive actions by Polish groups”, Israel J. Math., 165:1 (2008), 133–159 | DOI | MR | Zbl

[25] V. A. Chatyrko, K. L. Kozlov, “The maximal $G$-compactifications of $G$-spaces with special actions”, Proc. 9-th Prague Topological Symposium (Prague, 2001), Topol. Atlas, North Bay, ON, 2002, 15–21 | MR | Zbl

[26] M. G. Megrelishvili, “Ekvivariantnye popolneniya i bikompaktnye rasshireniya”, Soobsch. AN GSSR, 115:1 (1984), 21–24 | MR | Zbl

[27] J. Poncet, “Une classe d'espace homogènes possédant une mesure invariante”, C. R. Math. Acad. Sci. Paris, 238 (1954), 553–554 | MR | Zbl

[28] W. Roelcke, S. Dierolf, Uniform structures on topological groups and their quotients, McGraw-Hill, New York, 1981 | MR | Zbl

[29] J. L. Kelley, General topology, Van Nostrand, Toronto–New York–London, 1955 | MR | MR | Zbl | Zbl

[30] J. de Vries, “$G$-spaces: compactifications and pseudocompactness”, Topology theory and applications (Eger, 1983), Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, 655–666 | MR | Zbl

[31] N. Antonyan, S. Antonyan, “Free $G$-spaces and maximal equivariant compactifications”, Ann. Mat. Pura Appl. (4), 184:3 (2005), 407–420 | DOI | MR | Zbl

[32] V. Chatyrko, K. Kozlov, Dimension of maximal equivariant compact extensions, Preprint LiTH-MAT-R-2001-11, Linköping University, 2001

[33] E. V. Shchepin, “Real functions and canonical sets in Tikhonov products and topological groups”, Russian Math. Surveys, 31:6 (1976), 17–27 | DOI | MR | Zbl | Zbl

[34] G. I. Kats, “Izomorfnoe otobrazhenie topologicheskikh grupp v pryamye proizvedeniya grupp, udovletvoryayuschikh pervoi aksiome schetnosti”, UMN, 8:6 (1953), 107–113 | MR | Zbl

[35] N. V. Velichko, “Zametka o peristykh prostranstvakh”, Czechoslovak Math. J., 25:1 (1975), 8–19 | MR | Zbl

[36] B. A. Pasynkov, “Almost metrizable topological groups”, Soviet Math. Dokl., 6:2 (1965), 404–408 | MR | Zbl

[37] B. A. Pasynkov, “On the relative cellularity of Lindelöf subspaces of topological groups”, Topology Appl., 57:2–3 (1994), 249–258 | DOI | MR | Zbl

[38] M. G. Tkačenko, “The notion of $o$-tightness and $C$-embedded subspaces of products”, Topology Appl., 15:1 (1983), 93–98 | DOI | MR | Zbl

[39] A. Sokolovskaya, “$G$-compactifications of pseudocompact $G$-spaces”, Topology Appl., 155:4 (2008), 342–346 | DOI | MR | Zbl