Mots-clés : Dugundji compactum
@article{SM_2010_201_1_a4,
author = {K. L. Kozlov and V. A. Chatyrko},
title = {Topological transformation groups and {Dugundji} compacta},
journal = {Sbornik. Mathematics},
pages = {103--128},
year = {2010},
volume = {201},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/}
}
K. L. Kozlov; V. A. Chatyrko. Topological transformation groups and Dugundji compacta. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 103-128. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a4/
[1] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.), 58, 1968 | MR | MR | Zbl | Zbl
[2] R. Haydon, “On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE $(0-\mathrm{dim})$”, Studia Math., 52:1 (1974), 23–31 | MR | Zbl
[3] E. V. Shchepin, “Topology of limit spaces of uncountable inverse spectra”, Russian Math. Surveys, 31:5 (1976), 155–191 | DOI | MR | Zbl | Zbl
[4] E. V. Ščepin, “On $\varkappa$-metrizable space”, Math. USSR-Izv., 14:2 (1980), 407–440 | DOI | MR | Zbl
[5] E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71 | DOI | MR | Zbl | Zbl
[6] V. V. Uspenskiǐ, “Topological groups and Dugundji compacta”, Math. USSR-Sb., 67:2 (1990), 555–580 | DOI | MR | Zbl | Zbl
[7] L. N. Ivanovskii, “Ob odnoi gipoteze P. S. Aleksandrova”, Dokl. AN SSSR, 123:5 (1958), 785–786 | MR | Zbl
[8] V. I. Kuzminov, “O gipoteze P. S. Aleksandrova v teorii topologicheskikh grupp”, Dokl. AN SSSR, 125:4 (1959), 727–729 | MR | Zbl
[9] M. M. Choban, “Topologicheskoe stroenie podmnozhestv topologicheskikh grupp i ikh faktorprostranstv”, Mat. issledovaniya, 8, no. 4, Shtiintsa, Kishinev, 1973, 111–156
[10] B. A. Pasynkov, “On spaces with a compact group of transformations”, Soviet Math. Dokl., 17:6 (1976), 1522–1526 | MR | Zbl
[11] A. V. Arkhangel'skii, “Topological homogeneity. Topological groups and their continuous images”, Russian Math. Surveys, 42:2 (1987), 83–131 | DOI | MR | Zbl
[12] M. M. Choban, “Reduktsionnye teoremy o suschestvovanii neperyvnykh sechenii. Secheniya nad podmnozhestvami faktorprostranstv topologicheskikh grupp”, Topologicheskie struktury i algebraicheskie sistemy, Shtiintsa, Kishinev, 1977, 117–163
[13] S. Hernández, M. Sanchis, “Dugundji spaces in the coset space $G/H$”, Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, 262–268 | DOI | MR | Zbl
[14] A. V. Arkhangelskii, “Classes of topological groups”, Russian Math. Surveys, 36:3 (1981), 151–174 | DOI | MR | Zbl | Zbl
[15] V. V. Uspenskii, “Compact factor spaces of topological groups and Haydon spectra”, Math. Notes, 42:4 (1987), 827–831 | DOI | MR | Zbl | Zbl
[16] I. I. Guran, “On topological groups close to being Lindelöf”, Soviet Math. Dokl., 23:1 (1981), 173–175 | MR | Zbl
[17] S. A. Antonyan, Yu. M. Smirnov, “Universal objects and compact extensions for topological transformation groups”, Soviet Math. Dokl., 23:2 (1981), 279–284 | MR | Zbl
[18] R. S. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 1960, no. 36, 1–72 | MR | Zbl
[19] J. de Vries, Topological transformation groups. 1. A categorical approach, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl
[20] J. de Vries, “On the existence of $G$-compactifications”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:3 (1978), 275–280 | MR | Zbl
[21] K. L. Kozlov, V. A. Chatyrko, “On $G$-compactifications”, Math. Notes, 78:5–6 (2005), 649–661 | DOI | MR | Zbl
[22] R. Engelking, General topology, Polish Scientific Publ., Warsaw, 1977 | MR | MR | Zbl
[23] J. R. Isbell, Uniform spaces, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl
[24] J. van Mill, “Homogeneous spaces and transitive actions by Polish groups”, Israel J. Math., 165:1 (2008), 133–159 | DOI | MR | Zbl
[25] V. A. Chatyrko, K. L. Kozlov, “The maximal $G$-compactifications of $G$-spaces with special actions”, Proc. 9-th Prague Topological Symposium (Prague, 2001), Topol. Atlas, North Bay, ON, 2002, 15–21 | MR | Zbl
[26] M. G. Megrelishvili, “Ekvivariantnye popolneniya i bikompaktnye rasshireniya”, Soobsch. AN GSSR, 115:1 (1984), 21–24 | MR | Zbl
[27] J. Poncet, “Une classe d'espace homogènes possédant une mesure invariante”, C. R. Math. Acad. Sci. Paris, 238 (1954), 553–554 | MR | Zbl
[28] W. Roelcke, S. Dierolf, Uniform structures on topological groups and their quotients, McGraw-Hill, New York, 1981 | MR | Zbl
[29] J. L. Kelley, General topology, Van Nostrand, Toronto–New York–London, 1955 | MR | MR | Zbl | Zbl
[30] J. de Vries, “$G$-spaces: compactifications and pseudocompactness”, Topology theory and applications (Eger, 1983), Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, 655–666 | MR | Zbl
[31] N. Antonyan, S. Antonyan, “Free $G$-spaces and maximal equivariant compactifications”, Ann. Mat. Pura Appl. (4), 184:3 (2005), 407–420 | DOI | MR | Zbl
[32] V. Chatyrko, K. Kozlov, Dimension of maximal equivariant compact extensions, Preprint LiTH-MAT-R-2001-11, Linköping University, 2001
[33] E. V. Shchepin, “Real functions and canonical sets in Tikhonov products and topological groups”, Russian Math. Surveys, 31:6 (1976), 17–27 | DOI | MR | Zbl | Zbl
[34] G. I. Kats, “Izomorfnoe otobrazhenie topologicheskikh grupp v pryamye proizvedeniya grupp, udovletvoryayuschikh pervoi aksiome schetnosti”, UMN, 8:6 (1953), 107–113 | MR | Zbl
[35] N. V. Velichko, “Zametka o peristykh prostranstvakh”, Czechoslovak Math. J., 25:1 (1975), 8–19 | MR | Zbl
[36] B. A. Pasynkov, “Almost metrizable topological groups”, Soviet Math. Dokl., 6:2 (1965), 404–408 | MR | Zbl
[37] B. A. Pasynkov, “On the relative cellularity of Lindelöf subspaces of topological groups”, Topology Appl., 57:2–3 (1994), 249–258 | DOI | MR | Zbl
[38] M. G. Tkačenko, “The notion of $o$-tightness and $C$-embedded subspaces of products”, Topology Appl., 15:1 (1983), 93–98 | DOI | MR | Zbl
[39] A. Sokolovskaya, “$G$-compactifications of pseudocompact $G$-spaces”, Topology Appl., 155:4 (2008), 342–346 | DOI | MR | Zbl