On repeated concentration and periodic regimes with anomalous diffusion in polymers
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 57-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spreading of a penetrant in a polymer often disagrees with the classical diffusion equations and requires that relaxation (viscoelastic) properties of polymers be taken into account. We study the boundary-value problem for a system of equations modelling such anomalous diffusion in a bounded space domain. It is demonstrated that for a sufficiently short interval of time and a fixed stress at the beginning of this interval there exists a time-global weak solution of the boundary-value problem (that is, a concentration-stress pair) such that the concentrations at the beginning and the end of the interval of time coincide. Under an additional constraint imposed on the coefficients time-periodic weak solutions (without any limits on the period length) are shown to exist. Bibliography: 28 titles.
Keywords: polymer, penetrant, topological degree, weak solution, periodicity.
Mots-clés : non-Fickian diffusion
@article{SM_2010_201_1_a2,
     author = {D. A. Vorotnikov},
     title = {On repeated concentration and periodic regimes with anomalous diffusion in polymers},
     journal = {Sbornik. Mathematics},
     pages = {57--77},
     year = {2010},
     volume = {201},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a2/}
}
TY  - JOUR
AU  - D. A. Vorotnikov
TI  - On repeated concentration and periodic regimes with anomalous diffusion in polymers
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 57
EP  - 77
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a2/
LA  - en
ID  - SM_2010_201_1_a2
ER  - 
%0 Journal Article
%A D. A. Vorotnikov
%T On repeated concentration and periodic regimes with anomalous diffusion in polymers
%J Sbornik. Mathematics
%D 2010
%P 57-77
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a2/
%G en
%F SM_2010_201_1_a2
D. A. Vorotnikov. On repeated concentration and periodic regimes with anomalous diffusion in polymers. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 57-77. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a2/

[1] D. A. Edwards, D. S. Cohen, “A mathematical model for a dissolving polymer”, AIChE J., 41:11 (1995), 2345–2355 | DOI

[2] N. Thomas, A. H. Windle, “Transport of methanol in poly(methyl methacrylate)”, Polymer, 19:3 (1978), 255–265 | DOI

[3] N. L. Thomas, A. H. Windle, “A theory of case II diffusion”, Polymer, 23:4 (1982), 529–542 | DOI

[4] D. S. Cohen, A. B. White, jr., Th. P. Witelski, “Shock formation in a multidimensional viscoelastic diffusive system”, SIAM J. Appl. Math., 55:2 (1995), 348–368 | DOI | MR | Zbl

[5] D. A. Edwards, “A mathematical model for trapping skinning in polymers”, Stud. Appl. Math., 99:1 (1997), 49–80 | DOI | MR | Zbl

[6] D. A. Edwards, “A spatially nonlocal model for polymer desorption”, J. Engrg. Math., 53:3–4 (2005), 221–238 | DOI | MR | Zbl

[7] D. A. Edwards, R. A. Cairncross, “Desorption overshoot in polymer-penetrant systems: asymptotic and computational results”, SIAM J. Appl. Math., 63:1 (2002), 98–115 | DOI | MR | Zbl

[8] V. G. Zvyagin, D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, de Gruyter Ser. Nonlinear Anal. Appl., 12, de Gruyter, Berlin, 2008 | DOI | MR | Zbl

[9] D. S. Cohen, A. B. White, jr., “Sharp fronts due to diffusion and viscoelastic relaxation in polymers”, SIAM J. Appl. Math., 51:2 (1991), 472–483 | DOI | MR | Zbl

[10] S. Swaminathan, D. A. Edwards, “Traveling waves for anomalous diffusion in polymers”, Appl. Math. Lett., 17:1 (2004), 7–12 | DOI | MR | Zbl

[11] R. W. Cox, A model for stress-driven diffusion in polymers, Ph. D. thesis, California Institute of Technology, 1988

[12] H. Amann, “Highly degenerate quasilinear parabolic systems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18:1 (1991), 135–166 | MR | Zbl

[13] B. Hu, J. Zhang, “Gobal existence for a class of non-Fickian polymer-penetrant systems”, J. Partial Differential Equations, 9:3 (1996), 193–208 | MR | Zbl

[14] H. Amann, “Global existence for a class of highly degenerate parabolic systems”, Japan J. Indust. Appl. Math., 8:1 (1991), 143–151 | MR | Zbl

[15] D. A. Vorotnikov, “On the initial-boundary value problem for equations of anomalous diffusion in polymers”, Vestnik VSU, Ser. phys.-math., 2008, no. 1, 157–161

[16] D. A. Vorotnikov, “Weak solvability for equations of viscoelastic diffusion in polymers with variable coefficients”, J. Differential Equations, 246:3 (2009), 1038–1056 | DOI | MR | Zbl

[17] D. A. Vorotnikov, “Dissipative solutions for equations of viscoelastic diffusion in polymers”, J. Math. Anal. Appl., 339:2 (2008), 876–888 | DOI | MR | Zbl

[18] B. Rivière, S. Shaw, “Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers”, SIAM J. Numer. Anal., 44:6 (2006), 2650–2670 | DOI | MR | Zbl

[19] S. Kaniel, M. Shinbrot, “A reproductive property of the Navier–Stokes equations”, Arch. Rational Mech. Anal., 24:5 (1967), 363–369 | DOI | MR | Zbl

[20] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[21] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[22] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press,Oxford; Macmillan, New York, 1964 | MR | MR | Zbl | Zbl

[23] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl | Zbl

[24] N. G. Lloyd, Degree theory, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1978 | MR | Zbl

[25] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, URSS, M., 2004

[26] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl. (4), 146:1 (1986), 65–96 | DOI | MR | Zbl

[27] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994 | MR | MR | Zbl | Zbl

[28] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl