Iterated cyclic exponentials and power functions with extra-periodic first coefficients
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If $f$ is the iterated $m$-cyclic exponential $$ f(z)=e^{\lambda\alpha_1ze^{\alpha_2ze^{\dots}}}= \langle e^z;\lambda\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots\rangle, $$ where the first coefficient, $\lambda\alpha_1$, in the sequence of coefficients is extra-periodic, then in its power series expansion at $z=0$, $\sum_{n=0}^\infty\frac1{n!}H^{(n)}(f) z^n$, the form $H^{(n)}(f)$ can be written as \begin{align*} H^{(n)}(f) &=\lambda\alpha_1\sum_{k_1+\dots+k_m=n}\frac{n!}{k_1!\dotsb k_m!} (k_1\alpha_2)^{k_2}(k_2\alpha_3)^{k_3} \\ &\qquad\times\dots\times(k_{m-1}\alpha_m)^{k_m}[(k_m+\lambda)\alpha_1]^{k_1-1}. \end{align*} This formula is generalized to any number of extra-periodic coefficients at the start of the sequence. It is also shown that in some cases iterated cyclic exponentials whose first coefficients are not elements of the $m$-cyclic sequence $(\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots)$ can furnish a solution of a first-order system of differential equations with rational right-hand side. Bibliography: 32 titles.
Keywords: iterated exponential, cyclic exponential, iterated power function, cyclic power function, coefficient of an exponential, sequence.
@article{SM_2010_201_1_a1,
     author = {A. P. Bulanov},
     title = {Iterated cyclic exponentials and power functions with extra-periodic first coefficients},
     journal = {Sbornik. Mathematics},
     pages = {23--55},
     year = {2010},
     volume = {201},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Iterated cyclic exponentials and power functions with extra-periodic first coefficients
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 23
EP  - 55
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/
LA  - en
ID  - SM_2010_201_1_a1
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Iterated cyclic exponentials and power functions with extra-periodic first coefficients
%J Sbornik. Mathematics
%D 2010
%P 23-55
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/
%G en
%F SM_2010_201_1_a1
A. P. Bulanov. Iterated cyclic exponentials and power functions with extra-periodic first coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/

[1] L. Euler, “De formulis exponentialibus replicatis”, Acta Academiae Scientiarum Petropolitanae, 1 (1778), 38–60

[2] G. Eisenstein, “Entwicklung von $\alpha^{\alpha^{\alpha^{\dots}}}$”, Crelle's J. Reine Angew. Math., 1 (1844), 49–52

[3] L. Seidel, “Über die Grenzwerthe eines unendlichen Patenzausdruckes der Form $x^{x^{x^{\dots}}}$”, Abhandlungen der wissenchaften, 11 (1873), 1–10

[4] A. Carlsson, Om Iterade Functioner, Ph. D. Thesis, Uppsala, 1907

[5] I. N. Baker, P. J. Rippon, “Convergence of infinite exponentials”, Ann. Acad. Sci. Fenn. Ser. A I Math., 8:1 (1983), 179–186 | MR | Zbl

[6] D. F. Barrow, “Infinite exponentials”, Amer. Math. Monthly, 43:3 (1936), 150–160 | DOI | MR | Zbl

[7] W. J. Thron, “Convergence of infinite exponentials with complex elements”, Proc. Amer. Math. Soc., 8:6 (1957), 1040–1043 | DOI | MR | Zbl

[8] I. N. Baker, P. J. Rippon, “Iterating exponential functions with cyclic exponents”, Math. Proc. Cambridge Philos. Soc., 105:2 (1989), 357–375 | DOI | MR | Zbl

[9] A. P. Bulanov, “Regularity of infinite exponentials”, Izv. Math., 62:5 (1998), 901–928 | DOI | MR | Zbl

[10] A. P. Bulanov, “Infinite iterated power with alternating coefficients”, Sb. Math., 192:11 (2001), 1589–1620 | DOI | MR | Zbl

[11] A. P. Bulanov, “Parametricheskaya zavisimost radiusa skhodimosti ot koeffitsienta prosteishei periodicheskoi eksponenty”, Tezisy dokladov 12-i Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya” (Saratov, 2004), Saratovskii gosud. un-t, Saratov, 2004, 36–37

[12] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl

[13] D. Bernoulli, “Letter to Goldbach”, Correspondance mathématique et physique de quelles celebres geometres du XVIII siecle. 2, Imperial Academy of Sciences, St. Peterburg, 1843, 262

[14] C. Goldbach, “Letter to Daniel Bernoulli”, Correspondance mathématique et physique de quelles celebres geometres du XVIII siecle. 2, Imperial Academy of Sciences, St. Peterburg, 1843, 280–281

[15] J. Anderson, “Iterated exponentials”, Amer. Math. Monthly, 111:8 (2004), 668–679 | DOI | MR

[16] S. Hurwitz, “On the rational solutions of $m^n=n^m$ with $m\ne n$”, Amer. Math. Monthly, 74:3 (1967), 298–300 | DOI | MR | Zbl

[17] I. N. Galidakis, “On an application of Lambert's $W$ function to infinite exponentials”, Complex Var. Theory Appl., 49:11 (2004), 759–780 | DOI | MR | Zbl

[18] R. A. Knoebel, “Exponentials reiterated”, Amer. Math. Monthly, 88:4 (1981), 235–252 | DOI | MR | Zbl

[19] J. B. S. Haldane, “Enzymes”, The MIT Press, Cambridge, MA, 1930, 85–88

[20] I. N. Galidakis, “On solving the $p$-th complex auxiliary equation $f^{(p)}(z)=z$”, Complex Var. Theory Appl., 50:13 (2005), 977–997 | DOI | MR | Zbl

[21] P. Colwell, Solving Kepler's equation over three centuries, Willmann-Bell, Richmond, VA, 1993 | MR | Zbl

[22] A. E. Dubinov, I. N. Galidakis, “Yavnoe reshenie uravneniya Keplera”, Pisma v EChAYa, 4:3(139) (2007), 365–370

[23] I. N. Galidakis, “On some applications of the generalized hyper-Lambert functions”, Complex Var. Elliptic Equ., 52:12 (2007), 1101–1119 | DOI | MR | Zbl

[24] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:1 (1996), 329–359 | DOI | MR | Zbl

[25] A. E. Dubinov, I. D. Dubinova, S. K. Saikov, $W$-funktsiya Lamberta: tablitsa integralov i drugie matematicheskie svoistva, SarFTI, Sarov, 2004

[26] G. A. Ambartsumyan, A. V. Burobin, “Continuation of functions representable via infinitely multiple exponentials with alternating exponents”, Math. Notes, 73:1–2 (2003), 155–162 | DOI | MR | Zbl

[27] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 1, MIAN, M., 2003, 83–106 | DOI | MR | Zbl

[28] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Teoriya chisel, matematicheskii analiz i prilozheniya, Tr. MIAN, 157, Nauka, M., 1981, 31–48 | MR | Zbl

[29] E. M. Nikishin, “Discrete Sturm–Liouville operators and some problems of function theory”, J. Math. Sci., 35:5 (1986), 2679–2744 | DOI | MR | Zbl | Zbl

[30] A. I. Aptekarev, E. M. Nikishin, “Continuation of functions representable via infinitely multiple exponentials with alternating exponents”, Math. USSR-Sb., 49:2 (1984), 325–355 | DOI | MR | Zbl

[31] A. I. Aptekarev, “Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices”, Math. USSR-Sb., 53:1 (1986), 233–260 | DOI | MR | Zbl

[32] A. I. Aptekarev, “Vynuzhdennye dvizheniya odnostoronnei tsepochki Lengmyura”, Teoriya funktsii i priblizheniya. Chast 2 (Saratov, 1984), Izd-vo Sarat. un-ta, Saratov, 1986, 17–21 | MR