Iterated cyclic exponentials and power functions with extra-periodic first coefficients
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55

Voir la notice de l'article provenant de la source Math-Net.Ru

If $f$ is the iterated $m$-cyclic exponential $$ f(z)=e^{\lambda\alpha_1ze^{\alpha_2ze^{\dots}}}= \langle e^z;\lambda\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots\rangle, $$ where the first coefficient, $\lambda\alpha_1$, in the sequence of coefficients is extra-periodic, then in its power series expansion at $z=0$, $\sum_{n=0}^\infty\frac1{n!}H^{(n)}(f) z^n$, the form $H^{(n)}(f)$ can be written as \begin{align*} H^{(n)}(f) =\lambda\alpha_1\sum_{k_1+\dots+k_m=n}\frac{n!}{k_1!\dotsb k_m!} (k_1\alpha_2)^{k_2}(k_2\alpha_3)^{k_3} \\ \qquad\times\dots\times(k_{m-1}\alpha_m)^{k_m}[(k_m+\lambda)\alpha_1]^{k_1-1}. \end{align*} This formula is generalized to any number of extra-periodic coefficients at the start of the sequence. It is also shown that in some cases iterated cyclic exponentials whose first coefficients are not elements of the $m$-cyclic sequence $(\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots)$ can furnish a solution of a first-order system of differential equations with rational right-hand side. Bibliography: 32 titles.
Keywords: iterated exponential, cyclic exponential, iterated power function, cyclic power function, coefficient of an exponential, sequence.
@article{SM_2010_201_1_a1,
     author = {A. P. Bulanov},
     title = {Iterated cyclic exponentials and power functions with extra-periodic first coefficients},
     journal = {Sbornik. Mathematics},
     pages = {23--55},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Iterated cyclic exponentials and power functions with extra-periodic first coefficients
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 23
EP  - 55
VL  - 201
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/
LA  - en
ID  - SM_2010_201_1_a1
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Iterated cyclic exponentials and power functions with extra-periodic first coefficients
%J Sbornik. Mathematics
%D 2010
%P 23-55
%V 201
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/
%G en
%F SM_2010_201_1_a1
A. P. Bulanov. Iterated cyclic exponentials and power functions with extra-periodic first coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/