Iterated cyclic exponentials and power functions with extra-periodic first coefficients
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If $f$ is the iterated $m$-cyclic exponential
$$
f(z)=e^{\lambda\alpha_1ze^{\alpha_2ze^{\dots}}}=
\langle e^z;\lambda\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots\rangle,
$$
where the first coefficient, $\lambda\alpha_1$, in the sequence of coefficients is extra-periodic,
then in its power series expansion at $z=0$, $\sum_{n=0}^\infty\frac1{n!}H^{(n)}(f) z^n$,
the form $H^{(n)}(f)$ can be written as
\begin{align*}
H^{(n)}(f)
=\lambda\alpha_1\sum_{k_1+\dots+k_m=n}\frac{n!}{k_1!\dotsb k_m!}
(k_1\alpha_2)^{k_2}(k_2\alpha_3)^{k_3}
\\
\qquad\times\dots\times(k_{m-1}\alpha_m)^{k_m}[(k_m+\lambda)\alpha_1]^{k_1-1}.
\end{align*}
This formula is generalized to any number of extra-periodic coefficients at the start of the sequence.
It is also shown that in some cases iterated cyclic exponentials whose first coefficients are not elements of the $m$-cyclic sequence $(\alpha_1,\alpha_2,\dots,\alpha_m,\alpha_1,\dots)$ can furnish a solution of a first-order system of differential equations with rational right-hand side.
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
iterated exponential, cyclic exponential, iterated power function, cyclic power function, coefficient of an exponential, sequence.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_1_a1,
     author = {A. P. Bulanov},
     title = {Iterated cyclic exponentials and power functions with extra-periodic first coefficients},
     journal = {Sbornik. Mathematics},
     pages = {23--55},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/}
}
                      
                      
                    A. P. Bulanov. Iterated cyclic exponentials and power functions with extra-periodic first coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 23-55. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a1/
