Cox rings, semigroups and automorphisms of affine algebraic varieties
Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 1-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Cox realization of an affine variety, that is, a canonical representation of a normal affine variety with finitely generated divisor class group as a quotient of a factorially graded affine variety by an action of the Neron-Severi quasitorus. The realization is described explicitly for the quotient space of a linear action of a finite group. A universal property of this realization is proved, and some results in the divisor theory of an abstract semigroup emerging in this context are given. We show that each automorphism of an affine variety can be lifted to an automorphism of the Cox ring normalizing the grading. It follows that the automorphism group of an affine toric variety of dimension $\geqslant2$ without nonconstant invertible regular functions has infinite dimension. We obtain a wild automorphism of the three-dimensional quadratic cone that rises to the Anick automorphism of the polynomial algebra in four variables. Bibliography: 22 titles.
Keywords: affine variety, divisor theory of a semigroup, toric variety, wild automorphism.
Mots-clés : quotient
@article{SM_2010_201_1_a0,
     author = {I. V. Arzhantsev and S. A. Gaifullin},
     title = {Cox rings, semigroups and automorphisms of affine algebraic varieties},
     journal = {Sbornik. Mathematics},
     pages = {1--21},
     year = {2010},
     volume = {201},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
AU  - S. A. Gaifullin
TI  - Cox rings, semigroups and automorphisms of affine algebraic varieties
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1
EP  - 21
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/
LA  - en
ID  - SM_2010_201_1_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%A S. A. Gaifullin
%T Cox rings, semigroups and automorphisms of affine algebraic varieties
%J Sbornik. Mathematics
%D 2010
%P 1-21
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/
%G en
%F SM_2010_201_1_a0
I. V. Arzhantsev; S. A. Gaifullin. Cox rings, semigroups and automorphisms of affine algebraic varieties. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/

[1] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl

[2] Y. Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48:1 (2000), 331–348 | DOI | MR | Zbl

[3] F. Berchtold, J. Hausen, “Homogeneous coordinates for algebraic varieties”, J. Algebra, 266:2 (2003), 636–670 | DOI | MR | Zbl

[4] E. J. Elizondo, K. Kurano, K. K. Watanabe, “The total coordinate ring of a normal projective variety”, J. Algebra, 276:2 (2004), 625–637 | DOI | MR | Zbl

[5] I. V. Arzhantsev, “On the factoriality of Cox rings”, Math. Notes, 85:5–6 (2009), 623–629 | DOI | Zbl

[6] S. A. Gaifullin, “Affine toric $\operatorname{SL}(2)$-embeddings”, Sb. Math., 199:3 (2008), 319–339 | DOI | MR | Zbl

[7] V. Batyrev, F. Haddad, “On the geometry of $\operatorname{SL}(2)$-equivariant flips”, Mosc. Math. J., 8:4 (2008), 621–646 | MR | Zbl

[8] F. Berchtold, J. Hausen, “Cox rings and combinatorics”, Trans. Amer. Math. Soc., 359:3 (2007), 1205–1252 | DOI | MR | Zbl

[9] J. Hausen, “Cox rings and combinatorics. II”, Mosc. Math. J., 8:4 (2008), 711–757 | MR | Zbl

[10] Z. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl

[11] L. Skula, “Divisorentheorie einer Halbgruppe”, Math. Z., 114:2 (1970), 113–120 | DOI | MR | Zbl

[12] D. Bühler, Homogener Koordinatenring und Automorphismengruppe vollständiger torischer Varietäten, Diplomarbeit, Basel, 1996

[13] I. P. Shestakov, U. U. Umirbaev, “The tame and the wild automorphisms of polynomial rings in three variables”, J. Amer. Math. Soc., 17:1 (2004), 197–227 | DOI | MR | Zbl

[14] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 | MR | Zbl

[15] M. K. Smith, “Stably tame automorphisms”, J. Pure Appl. Algebra, 58:2 (1989), 209–212 | DOI | MR | Zbl

[16] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl

[17] F. Knop, H. Kraft, Th. Vust, “The Picard group of a $G$-variety”, Algebraische transformationsgruppen und invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 77–87 | MR | Zbl

[18] M. Nagata, “On rational surfaces. II”, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33 (1960), 271–293 | MR | Zbl

[19] M. Koras, P. Russell, “Linearization problems”, Algebraic group actions and quotients (Wykno, Poland, 2000), Hindawi Publ., Cairo, 2004, 91–107 | MR | Zbl

[20] I. V. Arzhantsev, J. Hausen, “On embeddings of homogeneous spaces with small boundary”, J. Algebra, 304:2 (2006), 950–988 | DOI | MR | Zbl

[21] I. R. Shafarevich, “On some infinite-dimensional groups”, Simpos. Int. Geom. Algebr. (Roma, 1965), Rend. Mat. e Appl. (5), 25, 1966, 208–212 ; И. Р. Шафаревич, Сочинения. Том 3, часть 2, АОЗТ “Прима В”, М., 1996 | MR | Zbl

[22] C. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156:1 (1964), 25–33 | DOI | MR | Zbl