Mots-clés : quotient
@article{SM_2010_201_1_a0,
author = {I. V. Arzhantsev and S. A. Gaifullin},
title = {Cox rings, semigroups and automorphisms of affine algebraic varieties},
journal = {Sbornik. Mathematics},
pages = {1--21},
year = {2010},
volume = {201},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/}
}
I. V. Arzhantsev; S. A. Gaifullin. Cox rings, semigroups and automorphisms of affine algebraic varieties. Sbornik. Mathematics, Tome 201 (2010) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/SM_2010_201_1_a0/
[1] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[2] Y. Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48:1 (2000), 331–348 | DOI | MR | Zbl
[3] F. Berchtold, J. Hausen, “Homogeneous coordinates for algebraic varieties”, J. Algebra, 266:2 (2003), 636–670 | DOI | MR | Zbl
[4] E. J. Elizondo, K. Kurano, K. K. Watanabe, “The total coordinate ring of a normal projective variety”, J. Algebra, 276:2 (2004), 625–637 | DOI | MR | Zbl
[5] I. V. Arzhantsev, “On the factoriality of Cox rings”, Math. Notes, 85:5–6 (2009), 623–629 | DOI | Zbl
[6] S. A. Gaifullin, “Affine toric $\operatorname{SL}(2)$-embeddings”, Sb. Math., 199:3 (2008), 319–339 | DOI | MR | Zbl
[7] V. Batyrev, F. Haddad, “On the geometry of $\operatorname{SL}(2)$-equivariant flips”, Mosc. Math. J., 8:4 (2008), 621–646 | MR | Zbl
[8] F. Berchtold, J. Hausen, “Cox rings and combinatorics”, Trans. Amer. Math. Soc., 359:3 (2007), 1205–1252 | DOI | MR | Zbl
[9] J. Hausen, “Cox rings and combinatorics. II”, Mosc. Math. J., 8:4 (2008), 711–757 | MR | Zbl
[10] Z. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[11] L. Skula, “Divisorentheorie einer Halbgruppe”, Math. Z., 114:2 (1970), 113–120 | DOI | MR | Zbl
[12] D. Bühler, Homogener Koordinatenring und Automorphismengruppe vollständiger torischer Varietäten, Diplomarbeit, Basel, 1996
[13] I. P. Shestakov, U. U. Umirbaev, “The tame and the wild automorphisms of polynomial rings in three variables”, J. Amer. Math. Soc., 17:1 (2004), 197–227 | DOI | MR | Zbl
[14] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 | MR | Zbl
[15] M. K. Smith, “Stably tame automorphisms”, J. Pure Appl. Algebra, 58:2 (1989), 209–212 | DOI | MR | Zbl
[16] I. V. Arzhantsev, J. Hausen, “Geometric invariant theory via Cox rings”, J. Pure Appl. Algebra, 213:1 (2009), 154–172 | DOI | MR | Zbl
[17] F. Knop, H. Kraft, Th. Vust, “The Picard group of a $G$-variety”, Algebraische transformationsgruppen und invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 77–87 | MR | Zbl
[18] M. Nagata, “On rational surfaces. II”, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33 (1960), 271–293 | MR | Zbl
[19] M. Koras, P. Russell, “Linearization problems”, Algebraic group actions and quotients (Wykno, Poland, 2000), Hindawi Publ., Cairo, 2004, 91–107 | MR | Zbl
[20] I. V. Arzhantsev, J. Hausen, “On embeddings of homogeneous spaces with small boundary”, J. Algebra, 304:2 (2006), 950–988 | DOI | MR | Zbl
[21] I. R. Shafarevich, “On some infinite-dimensional groups”, Simpos. Int. Geom. Algebr. (Roma, 1965), Rend. Mat. e Appl. (5), 25, 1966, 208–212 ; И. Р. Шафаревич, Сочинения. Том 3, часть 2, АОЗТ “Прима В”, М., 1996 | MR | Zbl
[22] C. P. Ramanujam, “A note on automorphism groups of algebraic varieties”, Math. Ann., 156:1 (1964), 25–33 | DOI | MR | Zbl