Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1837-1862 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multiple Walsh series $(S)$ on the group $G^m$ are studied. It is proved that every at most countable set is a uniqueness set for series $(S)$ under convergence over cubes. The recovery problem is solved for the coefficients of series $(S)$ that converge outside countable sets or outside sets of Dirichlet type. A number of analogues of the de la Vallée Poussin theorem are established for series $(S)$. Bibliography: 28 titles.
Keywords: multiple Walsh series, uniqueness sets, recovery problem for the coefficients of orthogonal series.
Mots-clés : dyadic group
@article{SM_2010_201_12_a6,
     author = {M. G. Plotnikov},
     title = {Quasi-measures on the group $G^m$, {Dirichlet} sets, and uniqueness problems for multiple {Walsh} series},
     journal = {Sbornik. Mathematics},
     pages = {1837--1862},
     year = {2010},
     volume = {201},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a6/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1837
EP  - 1862
VL  - 201
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a6/
LA  - en
ID  - SM_2010_201_12_a6
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series
%J Sbornik. Mathematics
%D 2010
%P 1837-1862
%V 201
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a6/
%G en
%F SM_2010_201_12_a6
M. G. Plotnikov. Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1837-1862. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a6/

[1] V. A. Skvorcov, “On the coefficients of convergent multiple Haar and Walsh series”, Moscow Univ. Math. Bull., 28:6 (1974), 119–121 | MR | Zbl | Zbl

[2] Kh. O. Movsisyan, “O edinstvennosti dvoinykh ryadov po sistemam Khaara i Uolsha”, Izv. AN ArmSSR. Matem., 9:1 (1974), 40–61 | MR | Zbl

[3] S. F. Lukomskii, “On certain classes of sets of uniqueness of multiple Walsh series”, Math. USSR-Sb., 67:2 (1990), 393–401 | DOI | MR | Zbl

[4] L. D. Gogoladze, “O vosstanovlenii koeffitsientov skhodyaschikhsya kratnykh funktsionalnykh ryadov”, Reports of enlarged session of the seminar of I. N. Vekua Institute of applied mathematics, Vol. 7, No2, Tbilisi University Press, Tbilisi, 1992, 20–22 | MR | Zbl

[5] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | MR | Zbl

[6] T. A. Zhereb'eva, “A class of uniqueness sets for double Walsh series”, Moscow Univ. Math. Bull., 62:5 (2007), 181–185 | DOI | MR | Zbl

[7] T. A. Zhereb'eva, “A class of sets of uniqueness for multiple Walsh series”, Moscow Univ. Math. Bull., 64:2 (2009), 13–18 | DOI | MR

[8] S. F. Lukomskii, “On a $U$-set for multiple Walsh series”, Anal. Math., 18:2 (1992), 127–138 | DOI | MR | Zbl

[9] M. G. Plotnikov, “On uniqueness sets for multiple Walsh series”, Math. Notes, 81:1–2 (2007), 234–246 | DOI | MR | Zbl

[10] M. G. Plotnikov, “On multiple Walsh series convergent over cubes”, Izv. Math., 71:1 (2007), 57–73 | DOI | MR | Zbl

[11] S. F. Lukomskii, Predstavlenie funktsii ryadami Uolsha i koeffitsienty skhodyaschikhsya ryadov Uolsha, Dis. ... dokt. fiz.-matem. nauk, SGU, Saratov, 1996

[12] N. S. Moreva, “Uniqueness of multiple Walsh series for the convergence on binary cubes”, Math. Notes, 81:3–4 (2007), 518–528 | DOI | MR | Zbl

[13] F. Weisz, “Uniqueness of two-parameter dyadic martingales and Walsh–Fourier series”, Math. Pannon., 9:1 (1998), 131–140 | MR | Zbl

[14] N. N. Kholshchevnikova, “A generalized trigonometric integral”, J. Contemp. Math. Anal., 36:4 (2001), 69–76 | MR

[15] V. A. Skvortsov, N. N. Kholshchevnikova, “Comparison of two generalized trigonometric integrals”, Math. Notes, 79:1–2 (2006), 254–262 | DOI | MR | Zbl

[16] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[17] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[18] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[19] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl

[20] K. M. Ostaszewski, “Henstock integration in the plane”, Mem. Amer. Math. Soc., 63, no. 353 (1986) | MR | Zbl

[21] W. R. Wade, K. Yoneda, “Uniqueness and quasi-measures on the group of integers of a $p$-series field”, Proc. Amer. Math. Soc., 84:2 (1982), 202–206 | MR | Zbl

[22] K. Yoneda, “Perfect sets of uniqueness on the group $2^\omega$”, Canad. J. Math., 34:3 (1982), 759–764 | MR | Zbl

[23] K. Yoneda, “A sufficient condition for a set to be a Dirichlet set on the dyadic group”, Math. Japon., 29:1 (1984), 45–50 | MR | Zbl

[24] K. Yoneda, “Dirichlet sets and some uniqueness theorems for Walsh series”, Tohoku Math. J. (2), 38:1 (1986), 1–14 | DOI | MR | Zbl

[25] V. A. Skvortsov, “On Haar series with convergent subsequences of partial sums”, Soviet Math. Dokl., 9 (1968), 1469–1471 | MR | Zbl

[26] V. Skvortsov, “Henstock–Kurzweil type integrals in $p$-adic harmonic analysis”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20:2 (2004), 207–224 | MR | Zbl

[27] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[28] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999 ; I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publ. Co., New York, 1955 | MR | Zbl | MR | Zbl