Quantitative estimates in Beurling-Helson type theorems
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the spaces $A_p(\mathbb T)$ of functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat f=\{\widehat f(k),\,k\in\mathbb Z\}$ belongs to $l^p$, $1\le p<2$. The norm in $A_p(\mathbb T)$ is defined by $\|f\|_{A_p}=\|\widehat f\|_{l^p}$. We study the rate of growth of the norms $\|e^{i\lambda\varphi}\|_{A_p}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T$. The results have natural applications to the problem of changes of variable in the spaces $A_p(\mathbb T)$. Bibliography: 17 titles.
@article{SM_2010_201_12_a5,
     author = {V. V. Lebedev},
     title = {Quantitative estimates in {Beurling-Helson} type theorems},
     journal = {Sbornik. Mathematics},
     pages = {1811--1836},
     year = {2010},
     volume = {201},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Quantitative estimates in Beurling-Helson type theorems
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1811
EP  - 1836
VL  - 201
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/
LA  - en
ID  - SM_2010_201_12_a5
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Quantitative estimates in Beurling-Helson type theorems
%J Sbornik. Mathematics
%D 2010
%P 1811-1836
%V 201
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/
%G en
%F SM_2010_201_12_a5
V. V. Lebedev. Quantitative estimates in Beurling-Helson type theorems. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/

[1] A. Beurling, H. Helson, “Fourier–Stieltjes transforms with bounded powers”, Math. Scand., 1 (1953), 120–126 | MR | Zbl

[2] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[3] J.-P. Kahane, “Quatre leçons sur les homéomorphismes du cercle et les séries de Fourier”, Topics in modern harmonic analysis (Turin–Milan, 1982), v. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990 | MR | Zbl

[4] Z. L. Leibenzon, “O koltse funktsii s absolyutno skhodyaschimisya ryadami Fure”, UMN, 9:3 (1954), 157–162 | MR | Zbl

[5] J.-P. Kahane, “Sur certaines classes de séries de Fourier absolument convergentes”, J. Math. Pures Appl. (9), 35:3 (1956), 249–259 | MR | Zbl

[6] L. Alpár, “Sur une classe particulière de séries de Fourier à certaines puissances absolument convergentes”, Studia Sci. Math. Hungar., 3 (1968), 279–286 | MR | Zbl

[7] V. Lebedev, A. Olevskiǐ, “$C^1$ changes of variable: Beurling–Helson type theorem and Hörmander conjecture on Fourier multipliers”, Geom. Funct. Anal., 4:2 (1994), 213–235 | DOI | MR | Zbl

[8] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl

[9] V. V. Lebedev, “Diffeomorphisms of the circle and the Beurling–Helson theorem”, Funct. Anal. Appl., 36:1 (2002), 25–29 | DOI | MR | Zbl

[10] N. Leblanc, “Sur la réciproque de l'inégalité de Carlson”, C. R. Acad. Sci. Paris Sér. A-B, 267 (1968), 332–334 | MR | Zbl

[11] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[12] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[13] M. Plancherel, G. Pólya, “Fonctions entières et intégrales de Fourier multiples. II”, Comment. Math. Helv., 10:2 (1937), 110–163 | DOI | MR | Zbl

[14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[15] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 | MR | Zbl

[16] V. V. Lebedev, “Kolichestvennye otsenki v teoreme Berlinga–Khelsona”, II mezhdunar. simp. Ryady Fure i ikh prilozheniya, Tez. dokl. (Dyurso, 2002), Rostov-na-Donu, 2002, 33–34

[17] V. Lebedev, “Rate of growth in Beurling–Helson theorem”, Harmonic analysis and related problems, Abstracts (Zaros, Crete, Greece), 2006