Quantitative estimates in Beurling-Helson type theorems
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the spaces $A_p(\mathbb T)$ of functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat f=\{\widehat f(k),\,k\in\mathbb Z\}$ belongs to $l^p$, $1\le p2$. The norm in $A_p(\mathbb T)$ is defined by $\|f\|_{A_p}=\|\widehat f\|_{l^p}$. We study the rate of growth of the norms $\|e^{i\lambda\varphi}\|_{A_p}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T$. The results have natural applications to the problem of changes of variable in the spaces $A_p(\mathbb T)$. Bibliography: 17 titles.
@article{SM_2010_201_12_a5,
     author = {V. V. Lebedev},
     title = {Quantitative estimates in {Beurling-Helson} type theorems},
     journal = {Sbornik. Mathematics},
     pages = {1811--1836},
     publisher = {mathdoc},
     volume = {201},
     number = {12},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Quantitative estimates in Beurling-Helson type theorems
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1811
EP  - 1836
VL  - 201
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/
LA  - en
ID  - SM_2010_201_12_a5
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Quantitative estimates in Beurling-Helson type theorems
%J Sbornik. Mathematics
%D 2010
%P 1811-1836
%V 201
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/
%G en
%F SM_2010_201_12_a5
V. V. Lebedev. Quantitative estimates in Beurling-Helson type theorems. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/