Quantitative estimates in Beurling-Helson type theorems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the spaces $A_p(\mathbb T)$ of functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat f=\{\widehat f(k),\,k\in\mathbb Z\}$ belongs to $l^p$, $1\le p2$. The norm in $A_p(\mathbb T)$ is defined by $\|f\|_{A_p}=\|\widehat f\|_{l^p}$. We study the rate of growth of the
norms $\|e^{i\lambda\varphi}\|_{A_p}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T$. The results have natural applications to the problem of changes of variable in the spaces $A_p(\mathbb T)$.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_2010_201_12_a5,
     author = {V. V. Lebedev},
     title = {Quantitative estimates in {Beurling-Helson} type theorems},
     journal = {Sbornik. Mathematics},
     pages = {1811--1836},
     publisher = {mathdoc},
     volume = {201},
     number = {12},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/}
}
                      
                      
                    V. V. Lebedev. Quantitative estimates in Beurling-Helson type theorems. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1811-1836. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a5/
