Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1801-1810 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an analogue of the Tate conjecture on homomorphisms of Abelian varieties over infinite cyclotomic extensions of finitely generated fields of characteristic zero. Bibliography: 19 titles.
Keywords: Abelian varieties
Mots-clés : Tate modules, Tate conjecture.
@article{SM_2010_201_12_a4,
     author = {Yu. G. Zarhin},
     title = {Endomorphisms of {Abelian} varieties, cyclotomic extensions and {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1801--1810},
     year = {2010},
     volume = {201},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a4/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1801
EP  - 1810
VL  - 201
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a4/
LA  - en
ID  - SM_2010_201_12_a4
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras
%J Sbornik. Mathematics
%D 2010
%P 1801-1810
%V 201
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a4/
%G en
%F SM_2010_201_12_a4
Yu. G. Zarhin. Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1801-1810. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a4/

[1] G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 ; “Erratum”, 75:2 (1984), 381 | DOI | MR | Zbl | DOI | MR

[2] G. Faltings, “Complements to Mordell”, Rational points, Aspects Math., 6, Vieweg, Braunschweig, 1986, 203–227 | MR | Zbl

[3] J. T. Tate, “Algebraic cycles and poles of zeta functions”, Arithmetical algebraic geometry (Proc. Conf. Purdue Univ., 1963), Harper and Row, New York, 1965, 93–110 | MR | Zbl

[4] J. Tate, “Endomorphisms of Abelian varieties over finite fields”, Invent. Math., 2:2 (1966), 134–144 | DOI | MR | Zbl

[5] Yu. G. Zarhin, A. N. Parshin, “Finiteness problems in Diophantine geometry”, Amer. Math. Soc. Transl. (2), 143 (1989), 35–102, arXiv: 0912.4325 | Zbl

[6] Yu. G. Zarkhin, “Torsion of Abelian varieties of finite characteristic”, Math. Notes, 22:1 (1977), 493–498 | DOI | MR | Zbl | Zbl

[7] F. A. Bogomolov, “Sur l'algébricité des représentations $\ell$-adiques”, C. R. Acad. Sci. Paris Sér. A-B, 290:15 (1980), 701–703 | MR | Zbl

[8] F. A. Bogomolov, “Points of finite order on an Abelian variety”, Math. USSR-Izv., 17:1 (1981), 55–72 | DOI | MR | Zbl | Zbl

[9] D. Mumford, Abelian varieties, Oxford Univ. Press, London, 1974 | MR | Zbl

[10] J.-P. Serre, Abelian $\ell$-adic representations and elliptic curves, Adv. Book Classics, Addison-Wesley, Redwood City, CA, 1989 | MR | Zbl

[11] J.-P. Serre, “Sur les groupes de congruence des variétés abéliennes”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 3–20 ; J.-P. Serre, “Sur les groupes de congruence des variétés abéliennes. II”, Изв. АН СССР. Сер. матем., 35:4 (1971), 731–737 ; J.-P. Serre, “Sur les groupes de congruence des variétés abéliennes. II”, Math. USSR-Izv., 5:4 (1971), 747–753 ; ØE uvres, v. II, Springer-Verlag, Berlin, 1986, 230–245 | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[12] J.-P. Serre, “Sur les groupes de Galois attachés aux groupes $p$-divisibles”, Proc. Conf. Local Fields (Driebergen, 1966), Springer-Verlag, Berlin, 1967, 118–131 ; ØE uvres, v. II, Springer-Verlag, Berlin, 1986, 325–338 | MR | Zbl | MR | Zbl

[13] J.-P. Serre, Lie algebras and Lie groups. 1964 lectures, given at Harvard University, Lecture Notes in Math., 1500, Springer-Verlag, Berlin–Heidelberg, 1992 | DOI | MR | Zbl

[14] A. Silverberg, “Fields of definition for homomorphisms of Abelian varieties”, J. Pure Appl. Algebra, 77:3 (1992), 253–262 | DOI | MR | Zbl

[15] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publ., New York–London, 1962 | MR | Zbl

[16] J.-P. Serre, “Lettres á Ken Ribet du 1/1/1981 et 29/1/1981”, ØE uvres. Collected papers, v. IV, Springer-Verlag, Berlin, 2000, 1–20 | MR | Zbl

[17] J.-P. Serre, Lectures on the Mordell–Weil theorem, Viehweg, Braunschweig, 1997 | MR | Zbl

[18] R. Noot, “Abelian varieties. Galois representation and properties of ordinary reduction”, Compositio Math., 97:1–2 (1995), 161–171 | MR | Zbl

[19] Yu. G. Zarhin, “A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction”, Invent. Math., 79:2 (1985), 309–321 | DOI | MR | Zbl