Integral estimates for differentiable functions on irregular domains
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1777-1790
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral representations for functions and their partial derivatives in terms of some fixed system of partial derivatives are constructed on irregular domains in a Euclidean space. Embedding theorems for Sobolev-type spaces into a Lebesgue space are established and the norms of the derivatives are estimated. Bibliography: 17 titles.
Keywords: integral representations of functions, embedding theorems.
Mots-clés : Sobolev spaces
@article{SM_2010_201_12_a2,
     author = {O. V. Besov},
     title = {Integral estimates for differentiable functions on irregular domains},
     journal = {Sbornik. Mathematics},
     pages = {1777--1790},
     year = {2010},
     volume = {201},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Integral estimates for differentiable functions on irregular domains
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1777
EP  - 1790
VL  - 201
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a2/
LA  - en
ID  - SM_2010_201_12_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Integral estimates for differentiable functions on irregular domains
%J Sbornik. Mathematics
%D 2010
%P 1777-1790
%V 201
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a2/
%G en
%F SM_2010_201_12_a2
O. V. Besov. Integral estimates for differentiable functions on irregular domains. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1777-1790. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a2/

[1] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 ; S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl

[2] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl

[3] Yu. G. Reshetnyak, “Integral representations of differentiable functions in domains with nonsmooth boundary”, Siberian Math. J., 21:6 (1981), 833–839 | DOI | MR | Zbl | Zbl

[4] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[5] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[6] O. V. Besov, “Sobolev's embedding theorem for a domain with irregular boundary”, Sb. Math., 192:3 (2001), 323–346 | DOI | MR | Zbl

[7] T. Kilpeläinen, J. Malý, “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwendungen, 19:2 (2000), 369–380 | MR | Zbl

[8] D. A. Labutin, “Sharpness of Sobolev inequalities for a class of irregular domains”, Proc. Steklov Inst. Math., 232:1 (2001), 211–215 | MR | Zbl

[9] B. V. Trushin, “Sobolev embedding theorems for a class of anisotropic irregular domains”, Proc. Steklov Inst. Math., 260:1 (2008), 287–309 | DOI | MR

[10] O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain”, Math. Notes, 74:2 (2003), 157–176 | DOI | MR | Zbl

[11] O. V. Besov, “Function spaces of Lizorkin–Triebel type on an irregular domain”, Proc. Steklov Inst. Math., 260:1 (2008), 25–36 | DOI | MR

[12] O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain”, Proc. Steklov Inst. Math., 269:1 (2010), 25–45 | DOI | Zbl

[13] V. M. Kokilashvili, M. A. Gabidzashvili, “On weighted inequalities for anisotropic potentials and maximal functions”, Soviet Math. Dokl., 31:3 (1985), 583–585 | MR | Zbl

[14] M. A. Gabidzashvili, “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbilisskogo matem. instituta, 82 (1986), 25–36 | MR | Zbl

[15] O. V. Besov, “Embeddings of spaces of differentiable functions of variable smoothness”, Proc. Steklov Inst. Math., 214:3 (1996), 19–53 | MR | Zbl

[16] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl

[17] B. V. Trushin, “O neuluchshaemosti vesovykh teorem vlozheniya Soboleva dlya anizotropno neregulyarnykh oblastei”, Sovremennye problemy fundamentalnoi i prikladnoi matematiki, Sb. nauchn. trudov, Izd-vo MFTI, M., 2009, 166–190