@article{SM_2010_201_12_a0,
author = {N. A. V. Bedoya and D. L. Gon\c{c}alves},
title = {Decomposability problem on branched coverings},
journal = {Sbornik. Mathematics},
pages = {1715--1730},
year = {2010},
volume = {201},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/}
}
N. A. V. Bedoya; D. L. Gonçalves. Decomposability problem on branched coverings. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/
[1] K. Borsuk, R. Molski, “On a class of continuous mappings”, Fund. Math., 45 (1957), 84–98 | MR | Zbl
[2] K. Sieklucki, “On superpositions of simple mappings”, Fund. Math., 48 (1960), 217–228 | MR | Zbl
[3] J. D. Baildon, “Open simple maps and periodic homeomorphisms”, Proc. Amer. Math. Soc., 39 (1973), 433–436 | DOI | MR | Zbl
[4] J. Krzempek, “Covering maps that are not compositions of covering maps of lesser order”, Proc. Amer. Math. Soc., 130:6 (2002), 1867–1873 | DOI | MR | Zbl
[5] S. I. Bogataya, S. A. Bogatyi, H. Zieschang, “On compositions of open mappings”, Sb. Math., 193:3 (2002), 311–327 | DOI | MR | Zbl
[6] G. Th. Whyburn, Analytic topology, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl
[7] S. Bogatyi, D. L. Gonçalves, H. Zieschang, “The minimal number of roots of surface mappings and quadratic equations in free groups”, Math. Z., 236:3 (2001), 419–452 | DOI | MR | Zbl
[8] D. H. Husemoller, “Ramified coverings of Riemann surfaces”, Duke Math. J., 29 (1962), 167–174 | DOI | MR | Zbl
[9] C. L. Ezell, “Branch point structure of covering maps onto nonorientable surfaces”, Trans. Amer. Math. Soc., 243 (1978), 123–133 | DOI | MR | Zbl
[10] S. Bogatyi, D. L. Gonçalves, E. Kudryavtseva, H. Zieschang, “Realization of primitive branched coverings over closed surfaces following the Hurwitz approach”, Cent. Eur. J. Math., 1:2 (2003), 184–197 | DOI | MR | Zbl
[11] S. A. Bogatyi, D. L. Gonçalves, E. A. Kudryavtseva, H. Zieschang, “Realization of primitive branched coverings over closed surfaces”, Advances in topological quantum field theory (Kananaskis Village, Canada, 2001), NATO Sci. Ser. II Math. Phys. Chem., 179, Kluwer Acad. Publ., Dordrecht, 2004, 297–316 | MR | Zbl
[12] A. L. Edmonds, R. S. Kulkarni, R. E. Stong, “Realizability of branched coverings of surfaces”, Trans. Amer. Math. Soc., 282:2 (1984), 773–790 | DOI | MR | Zbl
[13] D. L. Gonçalves, E. Kudryavtseva, H. Zieschang, “Roots of mappings on nonorientable surfaces and equations in free groups”, Manuscripta Math., 107:3 (2002), 311–341 | DOI | MR | Zbl
[14] P. Müller, “Primitive monodromy groups of polynomials”, Recent developments in the inverse Galois problem (Seattle, WA, USA, 1993), Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995, 385–401 | MR | Zbl
[15] R. M. Guralnick, M. G. Neubauer, “Monodromy groups of branched coverings: The generic case”, Recent developments in the inverse Galois problem (Seattle, WA, USA, 1993), Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995, 325–352 | MR | Zbl
[16] S. K. Lando, A. K. Zvonkin, “Graphs on surfaces and their applications”, Low-dimensional topology, v. II, Encyclopaedia Math. Sci., 141, Springer-Verlag, Berlin, 2004 | MR | Zbl
[17] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts in Math., 163, Springer-Verlag, New York, 1996 | MR | Zbl
[18] A. Hurwitz, “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR | Zbl
[19] J. F. Ritt, “Prime and composite polynomials”, Trans. Amer. Math. Soc., 23:1 (1922), 51–66 | DOI | MR | Zbl
[20] N. Jacobson, Basic algebra. I, Freeman, New York, 1985 | MR | Zbl