Decomposability problem on branched coverings
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a branched covering of degree $d$ between closed surfaces, it determines a collection of partitions of $d$, the branch data. In this work we show that any branch data are realized by an indecomposable primitive branched covering on a connected closed surface $N$ with $\chi(N) \leq 0$. This shows that decomposable and indecomposable realizations may coexist. Moreover, we characterize the branch data of a decomposable primitive branched covering.
Bibliography: 20 titles.
Keywords:
branched coverings, permutation groups.
@article{SM_2010_201_12_a0,
author = {N. A. V. Bedoya and D. L. Gon\c{c}alves},
title = {Decomposability problem on branched coverings},
journal = {Sbornik. Mathematics},
pages = {1715--1730},
publisher = {mathdoc},
volume = {201},
number = {12},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/}
}
N. A. V. Bedoya; D. L. Gonçalves. Decomposability problem on branched coverings. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/