Decomposability problem on branched coverings
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a branched covering of degree $d$ between closed surfaces, it determines a collection of partitions of $d$, the branch data. In this work we show that any branch data are realized by an indecomposable primitive branched covering on a connected closed surface $N$ with $\chi(N) \leq 0$. This shows that decomposable and indecomposable realizations may coexist. Moreover, we characterize the branch data of a decomposable primitive branched covering. Bibliography: 20 titles.
Keywords: branched coverings, permutation groups.
@article{SM_2010_201_12_a0,
     author = {N. A. V. Bedoya and D. L. Gon\c{c}alves},
     title = {Decomposability problem on branched coverings},
     journal = {Sbornik. Mathematics},
     pages = {1715--1730},
     year = {2010},
     volume = {201},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/}
}
TY  - JOUR
AU  - N. A. V. Bedoya
AU  - D. L. Gonçalves
TI  - Decomposability problem on branched coverings
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1715
EP  - 1730
VL  - 201
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/
LA  - en
ID  - SM_2010_201_12_a0
ER  - 
%0 Journal Article
%A N. A. V. Bedoya
%A D. L. Gonçalves
%T Decomposability problem on branched coverings
%J Sbornik. Mathematics
%D 2010
%P 1715-1730
%V 201
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/
%G en
%F SM_2010_201_12_a0
N. A. V. Bedoya; D. L. Gonçalves. Decomposability problem on branched coverings. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/

[1] K. Borsuk, R. Molski, “On a class of continuous mappings”, Fund. Math., 45 (1957), 84–98 | MR | Zbl

[2] K. Sieklucki, “On superpositions of simple mappings”, Fund. Math., 48 (1960), 217–228 | MR | Zbl

[3] J. D. Baildon, “Open simple maps and periodic homeomorphisms”, Proc. Amer. Math. Soc., 39 (1973), 433–436 | DOI | MR | Zbl

[4] J. Krzempek, “Covering maps that are not compositions of covering maps of lesser order”, Proc. Amer. Math. Soc., 130:6 (2002), 1867–1873 | DOI | MR | Zbl

[5] S. I. Bogataya, S. A. Bogatyi, H. Zieschang, “On compositions of open mappings”, Sb. Math., 193:3 (2002), 311–327 | DOI | MR | Zbl

[6] G. Th. Whyburn, Analytic topology, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl

[7] S. Bogatyi, D. L. Gonçalves, H. Zieschang, “The minimal number of roots of surface mappings and quadratic equations in free groups”, Math. Z., 236:3 (2001), 419–452 | DOI | MR | Zbl

[8] D. H. Husemoller, “Ramified coverings of Riemann surfaces”, Duke Math. J., 29 (1962), 167–174 | DOI | MR | Zbl

[9] C. L. Ezell, “Branch point structure of covering maps onto nonorientable surfaces”, Trans. Amer. Math. Soc., 243 (1978), 123–133 | DOI | MR | Zbl

[10] S. Bogatyi, D. L. Gonçalves, E. Kudryavtseva, H. Zieschang, “Realization of primitive branched coverings over closed surfaces following the Hurwitz approach”, Cent. Eur. J. Math., 1:2 (2003), 184–197 | DOI | MR | Zbl

[11] S. A. Bogatyi, D. L. Gonçalves, E. A. Kudryavtseva, H. Zieschang, “Realization of primitive branched coverings over closed surfaces”, Advances in topological quantum field theory (Kananaskis Village, Canada, 2001), NATO Sci. Ser. II Math. Phys. Chem., 179, Kluwer Acad. Publ., Dordrecht, 2004, 297–316 | MR | Zbl

[12] A. L. Edmonds, R. S. Kulkarni, R. E. Stong, “Realizability of branched coverings of surfaces”, Trans. Amer. Math. Soc., 282:2 (1984), 773–790 | DOI | MR | Zbl

[13] D. L. Gonçalves, E. Kudryavtseva, H. Zieschang, “Roots of mappings on nonorientable surfaces and equations in free groups”, Manuscripta Math., 107:3 (2002), 311–341 | DOI | MR | Zbl

[14] P. Müller, “Primitive monodromy groups of polynomials”, Recent developments in the inverse Galois problem (Seattle, WA, USA, 1993), Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995, 385–401 | MR | Zbl

[15] R. M. Guralnick, M. G. Neubauer, “Monodromy groups of branched coverings: The generic case”, Recent developments in the inverse Galois problem (Seattle, WA, USA, 1993), Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995, 325–352 | MR | Zbl

[16] S. K. Lando, A. K. Zvonkin, “Graphs on surfaces and their applications”, Low-dimensional topology, v. II, Encyclopaedia Math. Sci., 141, Springer-Verlag, Berlin, 2004 | MR | Zbl

[17] J. D. Dixon, B. Mortimer, Permutation groups, Grad. Texts in Math., 163, Springer-Verlag, New York, 1996 | MR | Zbl

[18] A. Hurwitz, “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR | Zbl

[19] J. F. Ritt, “Prime and composite polynomials”, Trans. Amer. Math. Soc., 23:1 (1922), 51–66 | DOI | MR | Zbl

[20] N. Jacobson, Basic algebra. I, Freeman, New York, 1985 | MR | Zbl