Decomposability problem on branched coverings
Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a branched covering of degree $d$ between closed surfaces, it determines a collection of partitions of $d$, the branch data. In this work we show that any branch data are realized by an indecomposable primitive branched covering on a connected closed surface $N$ with $\chi(N) \leq 0$. This shows that decomposable and indecomposable realizations may coexist. Moreover, we characterize the branch data of a decomposable primitive branched covering. Bibliography: 20 titles.
Keywords: branched coverings, permutation groups.
@article{SM_2010_201_12_a0,
     author = {N. A. V. Bedoya and D. L. Gon\c{c}alves},
     title = {Decomposability problem on branched coverings},
     journal = {Sbornik. Mathematics},
     pages = {1715--1730},
     publisher = {mathdoc},
     volume = {201},
     number = {12},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/}
}
TY  - JOUR
AU  - N. A. V. Bedoya
AU  - D. L. Gonçalves
TI  - Decomposability problem on branched coverings
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1715
EP  - 1730
VL  - 201
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/
LA  - en
ID  - SM_2010_201_12_a0
ER  - 
%0 Journal Article
%A N. A. V. Bedoya
%A D. L. Gonçalves
%T Decomposability problem on branched coverings
%J Sbornik. Mathematics
%D 2010
%P 1715-1730
%V 201
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/
%G en
%F SM_2010_201_12_a0
N. A. V. Bedoya; D. L. Gonçalves. Decomposability problem on branched coverings. Sbornik. Mathematics, Tome 201 (2010) no. 12, pp. 1715-1730. http://geodesic.mathdoc.fr/item/SM_2010_201_12_a0/