Approximating smooth functions using algebraic-trigonometric polynomials
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1689-1713 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form $p_n(t)+\tau_m(t)$, where $p_n(t)$ is an algebraic polynomial of degree $n$ and $\tau_m(t)=a_0+\sum_{k=1}^ma_k\cos k\pi t+b_k\sin k\pi t$ is a trigonometric polynomial of order $m$. The precise order of approximation by such polynomials in the classes $W^r_\infty(M)$ and an upper bound for similar approximations in the class $W^r_p(M)$ with $\frac43 are found. The proof of these estimates uses mixed series in Legendre polynomials which the author has introduced and investigated previously. Bibliography: 13 titles.
Keywords: classes of smooth functions, algebraic-trigonometric polynomials, simultaneous approximation of functions and derivatives, mixed series in Legendre polynomials.
@article{SM_2010_201_11_a5,
     author = {I. I. Sharapudinov},
     title = {Approximating smooth functions using algebraic-trigonometric polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1689--1713},
     year = {2010},
     volume = {201},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximating smooth functions using algebraic-trigonometric polynomials
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1689
EP  - 1713
VL  - 201
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/
LA  - en
ID  - SM_2010_201_11_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximating smooth functions using algebraic-trigonometric polynomials
%J Sbornik. Mathematics
%D 2010
%P 1689-1713
%V 201
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/
%G en
%F SM_2010_201_11_a5
I. I. Sharapudinov. Approximating smooth functions using algebraic-trigonometric polynomials. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1689-1713. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/

[1] I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | MR | Zbl

[2] I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | MR | Zbl

[3] I. I. Sharapudinov, “Approximation properties of the operators $\mathscr Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5–6 (2002), 705–732 | DOI | MR | Zbl

[4] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam. Teoriya i prilozheniya, Dag. nauch. tsentr RAN, Makhachkala, 2004

[5] I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | MR | Zbl

[6] I. I. Sharapudinov, “Approximation properties of the Vallée-Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3–4 (2008), 417–434 | DOI | MR | Zbl

[7] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[8] S. A. Telyakovskii, “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70(112):2 (1966), 252–265 | MR | Zbl

[9] I. E. Gopengauz, “A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment”, Math. Notes, 1:2 (1967), 110–116 | DOI | MR | Zbl

[10] H. Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62:3 (1947), 387–403 | DOI | MR | Zbl

[11] H. Pollard, “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63:2 (1948), 355–367 | DOI | MR | Zbl

[12] H. Pollard, “The mean convergence of orthogonal series. III”, Duke. Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl

[13] V. M. Tikhomirov, Nekotorye voprosy teorii priblizheniya funktsii, Izd-vo MGU, M., 1976 | MR