Approximating smooth functions using algebraic-trigonometric polynomials
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1689-1713

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form $p_n(t)+\tau_m(t)$, where $p_n(t)$ is an algebraic polynomial of degree $n$ and $\tau_m(t)=a_0+\sum_{k=1}^ma_k\cos k\pi t+b_k\sin k\pi t$ is a trigonometric polynomial of order $m$. The precise order of approximation by such polynomials in the classes $W^r_\infty(M)$ and an upper bound for similar approximations in the class $W^r_p(M)$ with $\frac43$ are found. The proof of these estimates uses mixed series in Legendre polynomials which the author has introduced and investigated previously. Bibliography: 13 titles.
Keywords: classes of smooth functions, algebraic-trigonometric polynomials, simultaneous approximation of functions and derivatives, mixed series in Legendre polynomials.
@article{SM_2010_201_11_a5,
     author = {I. I. Sharapudinov},
     title = {Approximating smooth functions using algebraic-trigonometric polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1689--1713},
     publisher = {mathdoc},
     volume = {201},
     number = {11},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximating smooth functions using algebraic-trigonometric polynomials
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1689
EP  - 1713
VL  - 201
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/
LA  - en
ID  - SM_2010_201_11_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximating smooth functions using algebraic-trigonometric polynomials
%J Sbornik. Mathematics
%D 2010
%P 1689-1713
%V 201
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/
%G en
%F SM_2010_201_11_a5
I. I. Sharapudinov. Approximating smooth functions using algebraic-trigonometric polynomials. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1689-1713. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a5/