@article{SM_2010_201_11_a4,
author = {I. K. Kozlov},
title = {Classification of {Lagrangian} fibrations},
journal = {Sbornik. Mathematics},
pages = {1647--1688},
year = {2010},
volume = {201},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a4/}
}
I. K. Kozlov. Classification of Lagrangian fibrations. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1647-1688. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a4/
[1] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl
[2] J. J. Duistermaat, “On global action-angle coordinates”, Comm. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl
[3] N. T. Zung, “Symplectic topology of integrable Hamiltonian systems. II: Topological classification”, Compositio Math., 138:2 (2003), 125–156 | DOI | MR | Zbl
[4] K. N. Mishachev, “The classification of Lagrangian bundles over surfaces”, Differential Geom. Appl., 6:4 (1996), 301–320 | DOI | MR | Zbl
[5] S.-T. Hu, Homotopy theory, Academic Press, New York–London, 1959 | MR | Zbl | Zbl
[6] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl
[7] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl
[8] J. Milnor, “On the existence of a connection with curvature zero”, Comment. Math. Helv., 32 (1958), 215–223 | DOI | MR | Zbl
[9] D. Freid, W. Goldman, M. W. Hirsh, “Affine manifolds with nilpotent holonomy”, Comment. Math. Helv., 56:4 (1981), 487–523 | DOI | MR
[10] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publ., New York–London–Sydney, 1966 | MR | MR | Zbl | Zbl
[11] N. T. Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl
[12] M. Symington, “Four dimensions from two in symplectic topology”, Topology and geometry of manifolds (University of Georgia, Athens, GA, USA, 2001), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003, 153–208 | MR | Zbl
[13] N. C. Leung, M. Symington, “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8:2 (2010), 143–187 | MR | Zbl
[14] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[15] D. Sepe, Classification of Lagrangian fibrations over a Klein bottle, arXiv: 0909.2982