Lower bounds for the half-plane capacity of compact sets and symmetrization
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1635-1646 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a bounded relatively closed subset $E$ of the upper half-plane $H=\{z:\operatorname{Im}z>0\}$, a new representation of the half-plane capacity of $E$ is obtained in terms of the inner radius of the connected component of the set $H\setminus E$ which goes off to infinity. For this capacity, new lower bounds in terms of the capacities of sets obtained by application of a series of geometric transformations of the set $E$, including the Steiner and circular symmetrizations, are established, and its behaviour under linear and radial averaging transformations of families of compact sets $\{E_k\}_{k=1}^n$ is examined. Bibliography: 10 titles.
Keywords: capacity, inner radius, Steiner symmetrization, circular symmetrization, linear averaging transformation, radial averaging transformation.
Mots-clés : radial transformation
@article{SM_2010_201_11_a3,
     author = {V. N. Dubinin},
     title = {Lower bounds for the half-plane capacity of compact sets and symmetrization},
     journal = {Sbornik. Mathematics},
     pages = {1635--1646},
     year = {2010},
     volume = {201},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Lower bounds for the half-plane capacity of compact sets and symmetrization
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1635
EP  - 1646
VL  - 201
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/
LA  - en
ID  - SM_2010_201_11_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Lower bounds for the half-plane capacity of compact sets and symmetrization
%J Sbornik. Mathematics
%D 2010
%P 1635-1646
%V 201
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/
%G en
%F SM_2010_201_11_a3
V. N. Dubinin. Lower bounds for the half-plane capacity of compact sets and symmetrization. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1635-1646. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/

[1] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[2] G. Lawler, “Schramm–Loewner evolution (SLE)”, Statistical mechanics (Park City, UT, USA, 2007), IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009, 231–295 | MR | Zbl

[3] G. F. Lawler, “Conformal invariance and 2D statistical physics”, Bull. Amer. Math. Soc. (N.S.), 46:1 (2009), 35–54 | DOI | MR | Zbl

[4] G. Pólya, G. Szegő, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | MR | Zbl | Zbl

[5] S. P. Lalley, G. F. Lawler, H. Narayanan, “Geometric interpretation of half-plane capacity”, Electron. Commun. Probab., 14 (2009), 566–571 | MR | Zbl

[6] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[7] H. Renggli, “An inequality for logarithmic capacities”, Pacific J. Math., 11:1 (1961), 313–314 | MR | Zbl

[8] M. Marcus, “Transformations of domains in the plane and applications in the theory of functions”, Pacific J. Math., 14:2 (1964), 613–626 | MR | Zbl

[9] V. N. Dubinin, “Steiner symmetrization and the initial coefficients of univalent functions”, Izv. Math., 74:4 (2010), 735–742 | DOI

[10] M. Marcus, “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Analyse Math., 27:1 (1974), 47–78 | DOI | MR | Zbl