Lower bounds for the half-plane capacity of compact sets and symmetrization
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1635-1646

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounded relatively closed subset $E$ of the upper half-plane $H=\{z:\operatorname{Im}z>0\}$, a new representation of the half-plane capacity of $E$ is obtained in terms of the inner radius of the connected component of the set $H\setminus E$ which goes off to infinity. For this capacity, new lower bounds in terms of the capacities of sets obtained by application of a series of geometric transformations of the set $E$, including the Steiner and circular symmetrizations, are established, and its behaviour under linear and radial averaging transformations of families of compact sets $\{E_k\}_{k=1}^n$ is examined. Bibliography: 10 titles.
Keywords: capacity, inner radius, Steiner symmetrization, circular symmetrization, linear averaging transformation, radial averaging transformation.
Mots-clés : radial transformation
@article{SM_2010_201_11_a3,
     author = {V. N. Dubinin},
     title = {Lower bounds for the half-plane capacity of compact sets and symmetrization},
     journal = {Sbornik. Mathematics},
     pages = {1635--1646},
     publisher = {mathdoc},
     volume = {201},
     number = {11},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Lower bounds for the half-plane capacity of compact sets and symmetrization
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1635
EP  - 1646
VL  - 201
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/
LA  - en
ID  - SM_2010_201_11_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Lower bounds for the half-plane capacity of compact sets and symmetrization
%J Sbornik. Mathematics
%D 2010
%P 1635-1646
%V 201
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/
%G en
%F SM_2010_201_11_a3
V. N. Dubinin. Lower bounds for the half-plane capacity of compact sets and symmetrization. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1635-1646. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a3/