Spectral decomposition of model operators in de Branges spaces
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1599-1634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to studying a class of completely continuous nonselfadjoint operators in de Branges spaces of entire functions. Among other results, a class of unconditional bases of de Branges spaces consisting of values of their reproducing kernels is constructed. The operators that are studied are model operators in the class of completely continuous non-dissipative operators with two-dimensional imaginary parts. Bibliography: 22 titles.
Keywords: de Branges spaces, nonselfadjoint operators, the Muckenhoupt condition, unconditional bases consisting of values of reproducing kernels.
@article{SM_2010_201_11_a2,
     author = {G. M. Gubreev and A. A. Tarasenko},
     title = {Spectral decomposition of model operators in de {Branges} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1599--1634},
     year = {2010},
     volume = {201},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a2/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - A. A. Tarasenko
TI  - Spectral decomposition of model operators in de Branges spaces
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1599
EP  - 1634
VL  - 201
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a2/
LA  - en
ID  - SM_2010_201_11_a2
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A A. A. Tarasenko
%T Spectral decomposition of model operators in de Branges spaces
%J Sbornik. Mathematics
%D 2010
%P 1599-1634
%V 201
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a2/
%G en
%F SM_2010_201_11_a2
G. M. Gubreev; A. A. Tarasenko. Spectral decomposition of model operators in de Branges spaces. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1599-1634. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a2/

[1] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[2] G. M. Gubreev, “Spectral theory of regular quasiexponentials and regular $B$-representable vector-valued functions (the projection method: 20 years later)”, St. Petersburg Math. J., 12:6 (2001), 875–947 | MR | Zbl

[3] G. M. Gubreev, G. V. Lukashenko, “On a class of completely continuous operators in Hilbert spaces”, Funct. Anal. Appl., 43:2 (2009), 143–146 | DOI | MR

[4] M. S. Brodskii, Triangular and Jordan representations of linear operators, Transl. Math. Monogr., 32, Amer. Math. Soc., Providence, RI, 1971 | MR | MR | Zbl | Zbl

[5] L. Golinskii, I. Mikhailova, “Hilbert spaces of entire functions as a $J$ theory subject”, Topics in interpolation theory (Leipzig, 1994), Oper. Theory Adv. Appl., 95, Birkhäuser, Basel, 1997, 205–251 | MR | Zbl

[6] G. M. Gubreev, “Spectral decomposition of finite-dimensional perturbations of dissipative Volterra operators”, Trans. Mosc. Math. Soc., 2003, 79–126 | MR | Zbl

[7] D. Z. Arov, H. Dym, “Strongly regular $J$-inner matrix functions and related problems”, Current trends in operator theory and its applications (Virginia Tech, Blacksburg, VA, USA, 2002), Oper. Theory Adv. Appl., 149, Birkhäuser, Basel, 2004, 79–106 | MR | Zbl

[8] N. K. Nikol'skiǐ, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin–Heidelberg, 1986 | MR | MR | Zbl | Zbl

[9] B. Szőkefalvi-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson et Cie, Paris; Akademiai Kiado, Budapest, 1967 | MR | MR | Zbl | Zbl

[10] B. S. Pavlov, “Basicity of an exponential system and Muckenhoupt's condition”, Soviet Math. Dokl., 20:4 (1979), 655–659 | MR | Zbl

[11] S. V. Khruščev, N. K. Nikol'skii, B. S. Pavlov, “Unconditional bases of exponentials and of reproducing kernels”, Complex analysis and spectral theory (Leningrad, 1979–1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 214–335 | DOI | MR | Zbl

[12] G. M. Gubreev, A. A. Tarasenko, “Representability of de branges matrices as Blaschke–Potapov products and completeness of some families of functions”, Math. Notes, 73:5–6 (2003), 796–801 | DOI | MR | Zbl

[13] G. M. Gubreev, A. A. Tarasenko, “Unconditional reproducing kernel bases in de Branges spaces”, Funct. Anal. Appl., 40:1 (2006), 58–61 | DOI | MR | Zbl

[14] M. S. Brodskii, M. S. Livshits, “Spektralnyi analiz nesamosopryazhennykh operatorov i promezhutochnye sistemy”, UMN, 13:1 (1958), 3–85 | MR | Zbl

[15] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[16] M. G. Krein, “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 309–326 | MR | Zbl

[17] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[18] N. K. Nikolskii, “Sovremennoe sostoyanie problemy spektralnogo analiza-sinteza”, Teoriya operatorov v funktsionalnykh prostranstvakh (Novosibirsk, 1975), Nauka, Novosibirsk, 1977, 240–282 | MR

[19] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[20] G. M. Gubreev, “Spectral analysis of biorthogonal expansions of functions, and exponential series”, Math. USSR-Izv., 35:3 (1990), 573–605 | DOI | MR | Zbl

[21] A. M. Minkin, “Reflection of exponents and unconditional bases of exponentials”, St. Petersburg Math. J., 3:5 (1992), 1043–1064 | MR | Zbl | Zbl

[22] M. M. Dzhrbashyan, “Interpolation and spectral expansions associated with differential operators of fractional order”, Soviet J. Contemporary Math. Anal., 19:2 (1984) | MR | Zbl