Chebyshev representation for rational functions
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective representation is obtained for rational functions all of whose critical points, apart from $g-1$, are simple and their corresponding critical values lie in a four-element set. Such functions are described using hyperelliptic curves of genus $g\geqslant1$. The classical Zolotarëv fraction arises in this framework for $g=1$. Bibliography: 8 titles.
Keywords: rational approximation, Riemann surfaces, Abelian integrals.
Mots-clés : Zolotarëv fraction
@article{SM_2010_201_11_a1,
     author = {A. B. Bogatyrev},
     title = {Chebyshev representation for rational functions},
     journal = {Sbornik. Mathematics},
     pages = {1579--1598},
     publisher = {mathdoc},
     volume = {201},
     number = {11},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Chebyshev representation for rational functions
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1579
EP  - 1598
VL  - 201
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/
LA  - en
ID  - SM_2010_201_11_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Chebyshev representation for rational functions
%J Sbornik. Mathematics
%D 2010
%P 1579-1598
%V 201
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/
%G en
%F SM_2010_201_11_a1
A. B. Bogatyrev. Chebyshev representation for rational functions. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/