Chebyshev representation for rational functions
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An effective representation is obtained for rational functions all of whose critical points, apart from $g-1$, are simple and their corresponding critical values lie in a four-element set. Such functions are described using hyperelliptic curves of genus $g\geqslant1$. The classical Zolotarëv fraction arises in this framework for $g=1$. Bibliography: 8 titles.
Keywords: rational approximation, Riemann surfaces, Abelian integrals.
Mots-clés : Zolotarëv fraction
@article{SM_2010_201_11_a1,
     author = {A. B. Bogatyrev},
     title = {Chebyshev representation for rational functions},
     journal = {Sbornik. Mathematics},
     pages = {1579--1598},
     year = {2010},
     volume = {201},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Chebyshev representation for rational functions
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1579
EP  - 1598
VL  - 201
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/
LA  - en
ID  - SM_2010_201_11_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Chebyshev representation for rational functions
%J Sbornik. Mathematics
%D 2010
%P 1579-1598
%V 201
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/
%G en
%F SM_2010_201_11_a1
A. B. Bogatyrev. Chebyshev representation for rational functions. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/

[1] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[2] A. B. Bogatyrev, Ekstremalnye mnogochleny i rimanovy poverkhnosti, Izdatelstvo MTsNMO, M., 2005 | MR

[3] A. B. Bogatyrev, “Effective approach to least deviation problems”, Sb. Math., 193:12 (2002), 1749–1769 | DOI | MR | Zbl

[4] N. H. Abel, “Sur l'intégration la formule diférentielle $\frac{\rho\,dx}{\sqrt{R}}$, $R$ et $\rho$ étant des fonctions entieres”, J.Reine u. Angewand. Math., 1 (1826), 105–144

[5] N. G. Chebotarev, Teoriya algebraicheskikh funktsii, URSS, M., 2003 | MR | Zbl

[6] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[7] E. I. Zolotarev, “Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naibolee i naimenee otklonyayuschikhsya ot nulya”, Zapiski Sankt-Peterburgskoi akad. nauk, 30:5 (1877) | Zbl

[8] A. B. Bogatyrev, “Effective computation of Chebyshev polynomials for several intervals”, Sb. Math., 190:11 (1999), 1571–1605 | DOI | MR | Zbl