Chebyshev representation for rational functions
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598
Voir la notice de l'article provenant de la source Math-Net.Ru
An effective representation is obtained for rational functions all of whose critical points, apart from $g-1$, are simple and their corresponding critical values lie in a four-element set. Such functions are described using hyperelliptic curves of genus $g\geqslant1$. The classical Zolotarëv fraction arises in this framework for $g=1$.
Bibliography: 8 titles.
Keywords:
rational approximation, Riemann surfaces, Abelian integrals.
Mots-clés : Zolotarëv fraction
Mots-clés : Zolotarëv fraction
@article{SM_2010_201_11_a1,
author = {A. B. Bogatyrev},
title = {Chebyshev representation for rational functions},
journal = {Sbornik. Mathematics},
pages = {1579--1598},
publisher = {mathdoc},
volume = {201},
number = {11},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/}
}
A. B. Bogatyrev. Chebyshev representation for rational functions. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1579-1598. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a1/