On the local behaviour of the multidimensional $\Lambda$-variation
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let two classes $(\Lambda^1,\dots,\Lambda^m)BV$ and $(M^1,\dots,M^m)BV$ on an interval $\Delta$ be given. In the paper, we find necessary and sufficient conditions for the $\Lambda$-variation of any function in the $M$-class, over a neighbourhood of every regular point, to tend to zero as the neighbourhood decreases. Bibliography: 10 titles.
Keywords: generalized variation, regular point, variation over a neighbourhood.
@article{SM_2010_201_11_a0,
     author = {A. N. Bakhvalov},
     title = {On the local behaviour of the multidimensional $\Lambda$-variation},
     journal = {Sbornik. Mathematics},
     pages = {1563--1578},
     year = {2010},
     volume = {201},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - On the local behaviour of the multidimensional $\Lambda$-variation
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1563
EP  - 1578
VL  - 201
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/
LA  - en
ID  - SM_2010_201_11_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T On the local behaviour of the multidimensional $\Lambda$-variation
%J Sbornik. Mathematics
%D 2010
%P 1563-1578
%V 201
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/
%G en
%F SM_2010_201_11_a0
A. N. Bakhvalov. On the local behaviour of the multidimensional $\Lambda$-variation. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/

[1] D. Waterman, “Convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] D. Waterman, “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | MR | Zbl

[3] A. A. Saakyan, “On the convergence of double Fourier series of functions with bounded harmonic variation”, Soviet J. Contemporary Math. Anal., 21:6 (1986), 1–13 | MR | Zbl | Zbl

[4] A. I. Sablin, Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1987

[5] A. I. Sablin, “$\Lambda$-variation and Fourier series”, Soviet Math. (Iz. VUZ), 31:10 (1987), 87–90 | MR | Zbl | Zbl

[6] A. N. Bakhvalov, “Continuity in $\Lambda$-variation of functions of several variables and convergence of multiple Fourier series”, Sb. Math., 193:12 (2002), 1731–1748 | DOI | MR | Zbl

[7] A. N. Bakhvalov, “Representing non-periodic functions of bounded $\Lambda$-variation by multi-dimensional Fourier integrals”, Izv. Math., 67:6 (2003), 1081–1100 | DOI | MR | Zbl

[8] A. N. Bakhvalov, “On local behaviour of multi-dimensional harmonic variation”, Izv. Math., 70:4 (2006), 641–660 | DOI | MR | Zbl

[9] S. Perlman, D. Waterman, “Some remarks on functions of $\Lambda$-bounded variation”, Proc. Amer. Math. Soc., 74:1 (1979), 113–118 | DOI | MR | Zbl

[10] A. N. Bakhvalov, “Convergence and localization of multiple Fourier series for the classes of functions of bounded $\Lambda$-variation”, Moscow Univ. Math. Bull., 63:3 (2008), 85–91 | DOI | MR | Zbl