On the local behaviour of the multidimensional $\Lambda$-variation
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578

Voir la notice de l'article provenant de la source Math-Net.Ru

Let two classes $(\Lambda^1,\dots,\Lambda^m)BV$ and $(M^1,\dots,M^m)BV$ on an interval $\Delta$ be given. In the paper, we find necessary and sufficient conditions for the $\Lambda$-variation of any function in the $M$-class, over a neighbourhood of every regular point, to tend to zero as the neighbourhood decreases. Bibliography: 10 titles.
Keywords: generalized variation, regular point, variation over a neighbourhood.
@article{SM_2010_201_11_a0,
     author = {A. N. Bakhvalov},
     title = {On the local behaviour of the multidimensional $\Lambda$-variation},
     journal = {Sbornik. Mathematics},
     pages = {1563--1578},
     publisher = {mathdoc},
     volume = {201},
     number = {11},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - On the local behaviour of the multidimensional $\Lambda$-variation
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1563
EP  - 1578
VL  - 201
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/
LA  - en
ID  - SM_2010_201_11_a0
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T On the local behaviour of the multidimensional $\Lambda$-variation
%J Sbornik. Mathematics
%D 2010
%P 1563-1578
%V 201
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/
%G en
%F SM_2010_201_11_a0
A. N. Bakhvalov. On the local behaviour of the multidimensional $\Lambda$-variation. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/