On the local behaviour of the multidimensional $\Lambda$-variation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let two classes $(\Lambda^1,\dots,\Lambda^m)BV$ and $(M^1,\dots,M^m)BV$ on an interval $\Delta$ be given. In the paper, we find necessary and sufficient conditions for the $\Lambda$-variation of any function in the $M$-class, over a neighbourhood of every regular point, to tend to zero as the neighbourhood decreases.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generalized variation, regular point, variation over a neighbourhood.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_11_a0,
     author = {A. N. Bakhvalov},
     title = {On the local behaviour of the multidimensional $\Lambda$-variation},
     journal = {Sbornik. Mathematics},
     pages = {1563--1578},
     publisher = {mathdoc},
     volume = {201},
     number = {11},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/}
}
                      
                      
                    A. N. Bakhvalov. On the local behaviour of the multidimensional $\Lambda$-variation. Sbornik. Mathematics, Tome 201 (2010) no. 11, pp. 1563-1578. http://geodesic.mathdoc.fr/item/SM_2010_201_11_a0/
