On multiple orthogonal polynomials for discrete Meixner measures
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1539-1561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.
Keywords: Meixner polynomials, Nikishin systems, Riemann surfaces and algebraic functions, logarithmic equilibrium potentials.
@article{SM_2010_201_10_a5,
     author = {V. N. Sorokin},
     title = {On multiple orthogonal polynomials for discrete {Meixner} measures},
     journal = {Sbornik. Mathematics},
     pages = {1539--1561},
     year = {2010},
     volume = {201},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a5/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On multiple orthogonal polynomials for discrete Meixner measures
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1539
EP  - 1561
VL  - 201
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a5/
LA  - en
ID  - SM_2010_201_10_a5
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On multiple orthogonal polynomials for discrete Meixner measures
%J Sbornik. Mathematics
%D 2010
%P 1539-1561
%V 201
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a5/
%G en
%F SM_2010_201_10_a5
V. N. Sorokin. On multiple orthogonal polynomials for discrete Meixner measures. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1539-1561. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a5/

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[2] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[3] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Math. USSR-Sb., 47:1 (1984), 155–193 | DOI | MR | Zbl | Zbl

[4] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[5] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Pade approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl

[6] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl

[7] A. A. Kandayan, V. N. Sorokin, “Multipoint Hermite–Padé approximations for beta functions”, Math. Notes, 87:1–2 (2010), 204–217 | DOI

[8] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl

[9] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl