Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Complex Hamiltonian systems with one degree of freedom on $\mathbb C^2$ with the standard symplectic structure $\omega_\mathbb C=dz\wedge dw$ and a polynomial Hamiltonian function $f=z^2+P_n(w)$, $n=1,2,3,4$, are studied. Two Hamiltonian systems $(M_i,\,\operatorname{Re}\omega_{\mathbb C,i},\,H_i=\operatorname{Re}f_i)$, $i=1,2$, are said to be Hamiltonian equivalent if there exists a complex symplectomorphism $M_1\to M_2$ taking the vector field $\operatorname{sgrad}H_1$ to $\operatorname{sgrad}H_2$. Hamiltonian equivalence classes of systems are described in the case $n=1,2,3,4$, a completed system is defined for $n=3,4$, and it is proved that it is Liouville integrable as a real Hamiltonian system. By restricting the real action-angle coordinates defined for the completed system in a neighbourhood of any nonsingular leaf, real canonical coordinates are obtained for the original system. Bibliography: 9 titles.
Keywords: integrable Hamiltonian system, Hamiltonian equivalence of systems, incompleteness of flows of Hamiltonian fields, completed Hamiltonian system
Mots-clés : action-angle variables.
@article{SM_2010_201_10_a4,
     author = {T. A. Lepskii},
     title = {Incomplete integrable {Hamiltonian} systems with complex polynomial {Hamiltonian} of small degree},
     journal = {Sbornik. Mathematics},
     pages = {1511--1538},
     year = {2010},
     volume = {201},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/}
}
TY  - JOUR
AU  - T. A. Lepskii
TI  - Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1511
EP  - 1538
VL  - 201
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/
LA  - en
ID  - SM_2010_201_10_a4
ER  - 
%0 Journal Article
%A T. A. Lepskii
%T Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
%J Sbornik. Mathematics
%D 2010
%P 1511-1538
%V 201
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/
%G en
%F SM_2010_201_10_a4
T. A. Lepskii. Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/

[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[2] L. Gavrilov, “Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields”, Ann. Inst. Fourier (Grenoble), 49:2 (1999), 611–652 | MR | Zbl

[3] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[4] S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336 | DOI | MR | Zbl

[5] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[6] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl

[7] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[8] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl

[9] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, New York, 1995 | MR | MR | Zbl | Zbl