Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538

Voir la notice de l'article provenant de la source Math-Net.Ru

Complex Hamiltonian systems with one degree of freedom on $\mathbb C^2$ with the standard symplectic structure $\omega_\mathbb C=dz\wedge dw$ and a polynomial Hamiltonian function $f=z^2+P_n(w)$, $n=1,2,3,4$, are studied. Two Hamiltonian systems $(M_i,\,\operatorname{Re}\omega_{\mathbb C,i},\,H_i=\operatorname{Re}f_i)$, $i=1,2$, are said to be Hamiltonian equivalent if there exists a complex symplectomorphism $M_1\to M_2$ taking the vector field $\operatorname{sgrad}H_1$ to $\operatorname{sgrad}H_2$. Hamiltonian equivalence classes of systems are described in the case $n=1,2,3,4$, a completed system is defined for $n=3,4$, and it is proved that it is Liouville integrable as a real Hamiltonian system. By restricting the real action-angle coordinates defined for the completed system in a neighbourhood of any nonsingular leaf, real canonical coordinates are obtained for the original system. Bibliography: 9 titles.
Keywords: integrable Hamiltonian system, Hamiltonian equivalence of systems, incompleteness of flows of Hamiltonian fields, completed Hamiltonian system
Mots-clés : action-angle variables.
@article{SM_2010_201_10_a4,
     author = {T. A. Lepskii},
     title = {Incomplete integrable {Hamiltonian} systems with complex polynomial {Hamiltonian} of small degree},
     journal = {Sbornik. Mathematics},
     pages = {1511--1538},
     publisher = {mathdoc},
     volume = {201},
     number = {10},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/}
}
TY  - JOUR
AU  - T. A. Lepskii
TI  - Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1511
EP  - 1538
VL  - 201
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/
LA  - en
ID  - SM_2010_201_10_a4
ER  - 
%0 Journal Article
%A T. A. Lepskii
%T Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
%J Sbornik. Mathematics
%D 2010
%P 1511-1538
%V 201
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/
%G en
%F SM_2010_201_10_a4
T. A. Lepskii. Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/