Mots-clés : action-angle variables.
@article{SM_2010_201_10_a4,
author = {T. A. Lepskii},
title = {Incomplete integrable {Hamiltonian} systems with complex polynomial {Hamiltonian} of small degree},
journal = {Sbornik. Mathematics},
pages = {1511--1538},
year = {2010},
volume = {201},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/}
}
T. A. Lepskii. Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/
[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[2] L. Gavrilov, “Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields”, Ann. Inst. Fourier (Grenoble), 49:2 (1999), 611–652 | MR | Zbl
[3] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl
[4] S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336 | DOI | MR | Zbl
[5] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl
[6] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl
[7] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[8] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl
[9] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, New York, 1995 | MR | MR | Zbl | Zbl