Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538
Voir la notice de l'article provenant de la source Math-Net.Ru
Complex Hamiltonian systems with one degree of freedom on $\mathbb C^2$ with the standard symplectic structure $\omega_\mathbb C=dz\wedge dw$ and a polynomial Hamiltonian function $f=z^2+P_n(w)$,
$n=1,2,3,4$, are studied. Two Hamiltonian systems
$(M_i,\,\operatorname{Re}\omega_{\mathbb C,i},\,H_i=\operatorname{Re}f_i)$, $i=1,2$, are said to be Hamiltonian equivalent if there exists a complex symplectomorphism $M_1\to M_2$ taking the vector field
$\operatorname{sgrad}H_1$ to $\operatorname{sgrad}H_2$. Hamiltonian equivalence classes of systems
are described in the case $n=1,2,3,4$, a completed system is defined for $n=3,4$, and it is proved that it is Liouville integrable as a real Hamiltonian system. By restricting the real action-angle coordinates defined for the
completed system in a neighbourhood of any nonsingular leaf, real canonical coordinates are obtained for the original system.
Bibliography: 9 titles.
Keywords:
integrable Hamiltonian system, Hamiltonian equivalence of systems, incompleteness of flows of Hamiltonian fields, completed Hamiltonian system
Mots-clés : action-angle variables.
Mots-clés : action-angle variables.
@article{SM_2010_201_10_a4,
author = {T. A. Lepskii},
title = {Incomplete integrable {Hamiltonian} systems with complex polynomial {Hamiltonian} of small degree},
journal = {Sbornik. Mathematics},
pages = {1511--1538},
publisher = {mathdoc},
volume = {201},
number = {10},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/}
}
TY - JOUR AU - T. A. Lepskii TI - Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree JO - Sbornik. Mathematics PY - 2010 SP - 1511 EP - 1538 VL - 201 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/ LA - en ID - SM_2010_201_10_a4 ER -
T. A. Lepskii. Incomplete integrable Hamiltonian systems with complex polynomial Hamiltonian of small degree. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1511-1538. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a4/