The asymptotics of the solution of an equation with a small parameter in a domain with angular points
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1495-1510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour of solutions of the first boundary-value problem for a second-order elliptic equation in a domain with angular points is investigated for the case when a small parameter is involved in the equation only as a factor multiplying one of the highest order derivatives and the limit equation is an ordinary differential equation. Although the order of the limit equation coincides with that of the original equation, the problem in question is singularly perturbed. The asymptotic behaviour of the solution of this problem is studied by the method of matched asymptotic expansions. Bibliography: 11 titles.
Keywords: small parameter, asymptotic behaviour, angular point.
@article{SM_2010_201_10_a3,
     author = {E. F. Lelikova},
     title = {The asymptotics of the solution of an equation with a~small parameter in a~domain with angular points},
     journal = {Sbornik. Mathematics},
     pages = {1495--1510},
     year = {2010},
     volume = {201},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a3/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - The asymptotics of the solution of an equation with a small parameter in a domain with angular points
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1495
EP  - 1510
VL  - 201
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a3/
LA  - en
ID  - SM_2010_201_10_a3
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T The asymptotics of the solution of an equation with a small parameter in a domain with angular points
%J Sbornik. Mathematics
%D 2010
%P 1495-1510
%V 201
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a3/
%G en
%F SM_2010_201_10_a3
E. F. Lelikova. The asymptotics of the solution of an equation with a small parameter in a domain with angular points. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1495-1510. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a3/

[1] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[2] V. A. Trenogin, “The development and applications of the asymptotic method of Lyusternik and Vishik”, Russian Math. Surveys, 25:4 (1970), 119–156 | DOI | MR | Zbl | Zbl

[3] A. H. Nayfeh, Perturbation methods, Wiley, New York–London–Sydney, 1973 | MR | MR | Zbl

[4] M. van Dyke, Perturbation methods in fluid mechanics, The Parabolic Press, Stanford, CA, 1975 | MR | Zbl | Zbl

[5] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[6] A. M. Il'in, E. F. Lelikova, “Method of joining asymptotic expansions for the equation $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ in a rectangle”, Russian Math. Surveys, 25:4 (1975), 533–548 | DOI | MR | Zbl | Zbl

[7] A. M. Ilin, Yu. P. Gorkov, E. F. Lelikova, “Asimptotika resheniya ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh v okrestnosti osoboi kharakteristiki predelnogo uravneniya”, Tr. sem. im. I. G. Petrovskogo, 1, Izd-vo Mosk. un-ta, M., 1975, 75–133 | MR | Zbl

[8] E. F. Lelikova, “On the asymptotics of a solution of a second order elliptic equation with small parameter at a higher derivative”, Proc. Inst. Math. Mech., 2003, Asymptotic expansions, approximation theory, topology, suppl. 1, 129–143 | MR | Zbl

[9] E. F. Lelikova, “Asymptotic behavior of the solution to an equation with a small parameter”, Dokl. Math., 80:3 (2009), 852–855 | DOI | MR | Zbl

[10] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Mosc. Math. Soc., 16 (1967), 227–313 | MR | Zbl | Zbl

[11] E. F. Lelikova, “On the structure of asymptotics of the solution of a second-order elliptic equation in a neighborhood of an angular point”, Proc. Inst. Math. Mech., 261, suppl. 1 (2008), 138–153 | DOI