Mots-clés : commutation relations
@article{SM_2010_201_10_a2,
author = {V. A. Zolotarev},
title = {Model representations for systems of selfadjoint operators satisfying commutation relations},
journal = {Sbornik. Mathematics},
pages = {1461--1493},
year = {2010},
volume = {201},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a2/}
}
V. A. Zolotarev. Model representations for systems of selfadjoint operators satisfying commutation relations. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1461-1493. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a2/
[1] M. S. Livshits, A. A. Yantsevich, Operator colligations in Hilbert spaces, Winston Sons, Washington, DC; A Halsted Press Book, Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl
[2] V. A. Zolotarev, Analiticheskie metody spektralnykh predstavlenii nesamosopryazhennykh i neunitarnykh operatorov, KhNU, Kharkov, 2003
[3] V. A. Zolotarev, “Time cones and a functional model on a Riemann surface”, Math. USSR-Sb., 70:2 (1991), 399–429 | DOI | MR | Zbl
[4] M. S. Livšic, N. Kravitsky, A. S. Markus, V. Vinnikov, Theory of commuting nonselfadjoint operators, Math. Appl., 332, Kluwer, Dordreht–London, 1995 | MR | Zbl
[5] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986 | MR | MR | Zbl | Zbl
[6] M. S. Livšic, L. L. Waksman, “Commuting nonselfadjoint operators in Hilbert space. Two independent studies”, Lect. Notes in Math., 1272, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[7] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl
[8] E. M. Dyn'kin, “Methods of the theory of singular integrals: Hilbert transform and Calderón–Zygmund theory”, Commutative harmonic analysis I. General survey. Classical aspects, Encyclopaedia Math. Sci., 15, Springer-Verlag, Berlin, 1991, 167–259 | MR | MR | Zbl | Zbl
[9] N. I. Akhiezer, Lektsii ob integralnykh preobrazovaniyakh, Vysshaya shkola, Kharkov, 1984 | MR | Zbl
[10] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957 | MR | MR | Zbl | Zbl
[11] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl | Zbl