On the acyclicity of the solution sets of operator equations
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1449-1459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A parameter-dependent completely continuous map is considered. The acyclicity of the set of fixed points of this map is proved for some fixed value of the parameter under the assumption that for close values of the parameter the map has a unique fixed point. The results obtained are used to prove the acyclicity of the set of fixed points of a ‘nonscattering’ map, as well as to study the topological structure of the set of fixed points of an abstract Volterra map. Bibliography: 13 titles.
Keywords: acyclic set, fixed point, completely continuous map.
@article{SM_2010_201_10_a1,
     author = {B. D. Gel'man},
     title = {On the acyclicity of the solution sets of operator equations},
     journal = {Sbornik. Mathematics},
     pages = {1449--1459},
     year = {2010},
     volume = {201},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - On the acyclicity of the solution sets of operator equations
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1449
EP  - 1459
VL  - 201
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/
LA  - en
ID  - SM_2010_201_10_a1
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T On the acyclicity of the solution sets of operator equations
%J Sbornik. Mathematics
%D 2010
%P 1449-1459
%V 201
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/
%G en
%F SM_2010_201_10_a1
B. D. Gel'man. On the acyclicity of the solution sets of operator equations. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1449-1459. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/

[1] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl

[2] R. Dragoni, J. W. Macki, P. Nistri, P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes Math. Ser., 342, Longman, Harlow, 1996 | MR | Zbl

[3] M. A. Krasnoselskii, A. I. Perov, “O suschestvovanii reshenii u nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 126:1 (1959), 15–18 | MR | Zbl

[4] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl | Zbl

[5] A. I. Bulgakov, L. N. Lyapin, “On the connectedness of the solution sets of functional inclusions”, Math. USSR-Sb., 47:1 (1984), 287–292 | DOI | MR | Zbl | Zbl

[6] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | MR | Zbl

[7] N. Aronszajn, “Le correspondant topologique de l'unicité dans la théorie des équations différentielles”, Ann. of Math. (2), 43:4 (1942), 730–738 | DOI | MR | Zbl

[8] S. Szufla, “Sets of fixed points of nonlinear mappings in function spaces”, Funkcial. Ekvac., 22:1 (1979), 121–126 | MR | Zbl

[9] L. Górniewicz, Topological fixed point theory of multivalued mappings, Math. Appl., 495, Kluwer Acad. Publ., Dordrecht–Boston–London, 1999 | MR | Zbl

[10] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001 | MR | Zbl

[11] B. D. Gelman, “O topologicheskoi strukture mnozhestva nepodvizhnykh tochek abstraktnogo uravneniya Volterra”, Vestn. VorGU. Ser. 1. Matem., fiz., 2001, no. 2, 63–66 | Zbl

[12] W. S. Massey, Homology and cohomology theory. An approach based on Alexander–Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, 46, Marcel Dekker, New York–Basel, 1978 | MR | MR | Zbl | Zbl

[13] E. G. Sklyarenko, “Some applications of the theory of sheaves in general topology”, Russian Math. Surveys, 19:6 (1964), 41–62 | DOI | MR | Zbl