@article{SM_2010_201_10_a1,
author = {B. D. Gel'man},
title = {On the acyclicity of the solution sets of operator equations},
journal = {Sbornik. Mathematics},
pages = {1449--1459},
year = {2010},
volume = {201},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/}
}
B. D. Gel'man. On the acyclicity of the solution sets of operator equations. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1449-1459. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/
[1] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[2] R. Dragoni, J. W. Macki, P. Nistri, P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Res. Notes Math. Ser., 342, Longman, Harlow, 1996 | MR | Zbl
[3] M. A. Krasnoselskii, A. I. Perov, “O suschestvovanii reshenii u nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 126:1 (1959), 15–18 | MR | Zbl
[4] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl | Zbl
[5] A. I. Bulgakov, L. N. Lyapin, “On the connectedness of the solution sets of functional inclusions”, Math. USSR-Sb., 47:1 (1984), 287–292 | DOI | MR | Zbl | Zbl
[6] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | MR | Zbl
[7] N. Aronszajn, “Le correspondant topologique de l'unicité dans la théorie des équations différentielles”, Ann. of Math. (2), 43:4 (1942), 730–738 | DOI | MR | Zbl
[8] S. Szufla, “Sets of fixed points of nonlinear mappings in function spaces”, Funkcial. Ekvac., 22:1 (1979), 121–126 | MR | Zbl
[9] L. Górniewicz, Topological fixed point theory of multivalued mappings, Math. Appl., 495, Kluwer Acad. Publ., Dordrecht–Boston–London, 1999 | MR | Zbl
[10] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001 | MR | Zbl
[11] B. D. Gelman, “O topologicheskoi strukture mnozhestva nepodvizhnykh tochek abstraktnogo uravneniya Volterra”, Vestn. VorGU. Ser. 1. Matem., fiz., 2001, no. 2, 63–66 | Zbl
[12] W. S. Massey, Homology and cohomology theory. An approach based on Alexander–Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, 46, Marcel Dekker, New York–Basel, 1978 | MR | MR | Zbl | Zbl
[13] E. G. Sklyarenko, “Some applications of the theory of sheaves in general topology”, Russian Math. Surveys, 19:6 (1964), 41–62 | DOI | MR | Zbl