On the acyclicity of the solution sets of operator equations
Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1449-1459

Voir la notice de l'article provenant de la source Math-Net.Ru

A parameter-dependent completely continuous map is considered. The acyclicity of the set of fixed points of this map is proved for some fixed value of the parameter under the assumption that for close values of the parameter the map has a unique fixed point. The results obtained are used to prove the acyclicity of the set of fixed points of a ‘nonscattering’ map, as well as to study the topological structure of the set of fixed points of an abstract Volterra map. Bibliography: 13 titles.
Keywords: acyclic set, fixed point, completely continuous map.
@article{SM_2010_201_10_a1,
     author = {B. D. Gel'man},
     title = {On the acyclicity of the solution sets of operator equations},
     journal = {Sbornik. Mathematics},
     pages = {1449--1459},
     publisher = {mathdoc},
     volume = {201},
     number = {10},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - On the acyclicity of the solution sets of operator equations
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1449
EP  - 1459
VL  - 201
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/
LA  - en
ID  - SM_2010_201_10_a1
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T On the acyclicity of the solution sets of operator equations
%J Sbornik. Mathematics
%D 2010
%P 1449-1459
%V 201
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/
%G en
%F SM_2010_201_10_a1
B. D. Gel'man. On the acyclicity of the solution sets of operator equations. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1449-1459. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a1/