@article{SM_2010_201_10_a0,
author = {A. V. Badanin and E. L. Korotyaev},
title = {A~magnetic {Schr\"odinger} operator on a periodic graph},
journal = {Sbornik. Mathematics},
pages = {1403--1448},
year = {2010},
volume = {201},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_10_a0/}
}
A. V. Badanin; E. L. Korotyaev. A magnetic Schrödinger operator on a periodic graph. Sbornik. Mathematics, Tome 201 (2010) no. 10, pp. 1403-1448. http://geodesic.mathdoc.fr/item/SM_2010_201_10_a0/
[1] R. Saito, G. Dresselhaus, M. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, Tokyo, 1998
[2] P. Kharris, Uglerodnye nanotruby i rodstvennye struktury. Novye materialy XXI veka, Tekhnosfera, M., 2003
[3] E. Korotyaev, I. Lobanov, “Schrödinger operators on zigzag nanotubes”, Ann. Henri Poincaré, 8:6 (2007), 1151–1176 | DOI | MR | Zbl
[4] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 | MR | MR | Zbl | Zbl
[5] W. Magnus, S. Winkler, Hill's equation, Dover, New York, 1979 | MR | Zbl
[6] E. Korotyaev, I. Lobanov, Zigzag periodic nanotube in magnetic field, arXiv: math/0604007
[7] A. Badanin, J. Brüning, E. Korotyaev, “The Lyapunov function for Schrodinger operators with a periodic $2\times2$ matrix potential”, J. Funct. Anal., 234:1 (2006), 106–126 | DOI | MR | Zbl
[8] D. Chelkak, E. Korotyaev, “Spectral estimates for Schrodinger operators with periodic matrix potentials on the real line”, Int. Math. Res. Not., 7 (2006), ID 60314 | MR | Zbl
[9] E. Korotyaev, “Conformal spectral theory for the monodromy matrix”, Trans. Amer. Math. Soc., 362:7 (2010), 3435–3462 | DOI | MR | Zbl
[10] A. Badanin, J. Brüning, E. Korotyaev, I. Lobanov, “Schrödinger operator on armchair nanotube. I”, arXiv: 0707.3909
[11] A. Badanin, J. Brüning, E. Korotyaev, “Schrödinger operator on armchair nanotube. II”, arXiv: 0707.3900
[12] L. Pauling, “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4 (1936), 673–677 | DOI
[13] K. Ruedenberg, Ch. W. Scherr, “Free-electron network model for conjugated systems. I. Theory”, J. Chem. Phys., 21 (1953), 1565–1581 | DOI
[14] C. A. Coulson, “Note on the applicability of the free-electron network model to metals”, Proc. Phys. Soc. Ser. A, 67:7 (1954), 608–614 | DOI | Zbl
[15] E. W. Montroll, “Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions”, J. Math. Phys., 11:2 (1970), 635–648 | DOI
[16] S. Novikov, “Schrödinger operators on graphs and symplectic geometry”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 397–413 | MR | Zbl
[17] V. Kostrykin, R. Schrader, “Quantum wires with magnetic fluxes”, Comm. Math. Phys., 237:1–2 (2003), 161–179 | DOI | MR | Zbl
[18] K. Pankrashkin, “Localization effects in a periodic quantum graph with magnetic field and spin-orbit interaction”, J. Math. Phys., 47:11 (2006), 112105 | DOI | MR | Zbl
[19] J. Brüning, V. Geyler, K. Pankrashkin, “Cantor and band spectra for periodic quantum graphs with magnetic fields”, Comm. Math. Phys., 269:1 (2007), 87–105 | DOI | MR | Zbl
[20] V. S. Rabinovich, S. Roch, “Essential spectra of difference operators on ${\mathbb Z}^n$-periodic graphs”, J. Phys. A, 40:33 (2007), 10109–10128 | DOI | MR | Zbl
[21] A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications, Springer-Verlag, Berlin, Heidelberg, 2007
[22] J.-C. Charlier, P. C. Eklund, J. Zhu, A. C. Ferrari, “Electron and phonon properties of graphene: their relationship with carbon nanotubes”, Carbon nanotubes, Topics in Applied Physics, 111, Springer-Verlag, Berlin, 2008, 673–709 | DOI
[23] T. Ando, “The electronic properties of graphene and carbon nanotubes”, NPG Asia Mater, 1:1 (2009), 17–21
[24] E. L. Korotyaev, A. Kutsenko, “Zigzag nanoribbons in external electric fields”, Asymptot. Anal., 66:3–4 (2010), 187–206 | DOI | MR | Zbl
[25] E. Korotyaev, A. Kutsenko, “Zigzag and armchair nanotubes in external fields”, Differential equations: systems, applications and analysis, Nova Science Publ., 2009, arXiv: 0906.4018
[26] E. Korotyaev, “Effective masses for zigzag nanotubes in magnetic fields”, Lett. Math. Phys., 83:1 (2008), 83–95 | DOI | MR | Zbl
[27] K. Pankrashkin, “Spectra of Schrödinger operators on equilateral quantum graphs”, Lett. Math. Phys., 77:2 (2006), 139–154 | DOI | MR | Zbl
[28] P. Kuchment, O. Post, “On the spectra of carbon nano-structures”, Comm. Math. Phys., 275:3 (2007), 805–826 | DOI | MR | Zbl
[29] M. G. Krejn, “Foundations of the theory of lambda-zones of stability of a canonical system of linear differential equations with periodic coefficients”, Amer. Math. Soc. Transl. 2, 120 (1983), 1–70 | MR | Zbl | Zbl
[30] Ch. Gerard, F. Nier, “The Mourre theory for analytically fibered operators”, J. Funct. Anal., 152:1 (1998), 202–219 | DOI | MR | Zbl
[31] W. A. Harrison, Electronic structure and the properties of solids: The physics of the chemical band, Dover, New York, 1989
[32] P. Kargaev, E. Korotyaev, “The inverse problem for the Hill operator, a direct approach”, Invent. Math., 129:3 (1997), 567–593 | DOI | MR | Zbl