Recovering Sturm-Liouville operators from spectra on a graph with a cycle
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1403-1415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse problem of spectral analysis is studied for Sturm-Liouville differential operators on a graph with a cycle and with generalized matching conditions at the internal vertex. Theorems on the unique recovery of operators from a system of spectra are proved, and a constructive solution is obtained for this class of inverse problems. Bibliography: 26 titles.
Keywords: inverse problems, problems with cycles.
@article{SM_2009_200_9_a5,
     author = {V. A. Yurko},
     title = {Recovering {Sturm-Liouville} operators from spectra on a~graph with a~cycle},
     journal = {Sbornik. Mathematics},
     pages = {1403--1415},
     year = {2009},
     volume = {200},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a5/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Recovering Sturm-Liouville operators from spectra on a graph with a cycle
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1403
EP  - 1415
VL  - 200
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a5/
LA  - en
ID  - SM_2009_200_9_a5
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Recovering Sturm-Liouville operators from spectra on a graph with a cycle
%J Sbornik. Mathematics
%D 2009
%P 1403-1415
%V 200
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a5/
%G en
%F SM_2009_200_9_a5
V. A. Yurko. Recovering Sturm-Liouville operators from spectra on a graph with a cycle. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1403-1415. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a5/

[1] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 | MR | MR | Zbl | Zbl

[2] B. M. Levitan, Inverse Sturm–Liouville problems, Oper. Theory Adv. Appl., 22, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl | Zbl

[3] J. Pöschel, E. Trubowitz, Inverse spectral theory, Pure Appl. Math., 130, Academic Press, Boston, MA, 1987 | MR | Zbl

[4] G. Freiling, V. Yurko, Inverse Sturm–Liouville problems and their applications, Nova Science Publ., Huntington, NY, 2001 | MR | Zbl

[5] Kh. Chadan, D. Colton, L. Päivärinta, W. Rundell, An introduction to inverse scattering and inverse spectral problems, SIAM Monogr. Math. Model. Comput., 2, SIAM, Philadelphia, PA, 1997 | MR | Zbl

[6] R. Beals, P. Deift, C. Tomei, Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[7] V. A. Yurko, Inverse spectral problems for differential operators and their applications, Anal. Methods Spec. Funct., 2, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[8] V. Yurko, Method of spectral mappings in the inverse problem theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl

[9] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[10] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[11] Yu. V. Pokornyi, A. V. Borovskikh, “Differential equations on networks (geometric graphs)”, J. Math. Sci. (N. Y.), 119:6 (2004), 691–718 | DOI | MR | Zbl

[12] Yu. V. Pokornyi, V. L. Pryadiev, “Some problems of the qualitative Sturm–Liouville theory on a spatial network”, Russian Math. Surveys, 59:3 (2004), 515–552 | DOI | MR | Zbl

[13] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl

[14] V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl

[15] B. M. Brown, R. Weikard, “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[16] G. Freiling, V. Yurko, “Inverse problems for Sturm–Liouville operators on noncompact trees”, Results Math., 50:3–4 (2007), 195–212 | DOI | MR | Zbl

[17] V. A. Yurko, “Inverse problems for differential operators of any order on trees”, Math. Notes, 83:1–2 (2008), 125–137 | DOI | MR | Zbl

[18] A. L. Bukhgeim, Introduction to the theory of inverse problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2000 | MR | Zbl

[19] A. M. Denisov, Elements of the theory of inverse problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 1999 | MR | Zbl

[20] S. I. Kabanikhin, A. D. Satybaev, M. A. Shishlenin, Direct methods of solving multidimensional inverse hyperbolic problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2005 | MR | Zbl

[21] M. M. Lavrentiev, A. V. Avdeev, M. M. Lavrentiev, jr., V. I. Priimenko, Inverse problems of mathematical physics, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2003 | MR | Zbl

[22] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Monogr. Textbooks Pure Appl. Math., 231, Marcel Dekker, New York, 2000 | MR | Zbl

[23] V. G. Romanov, Inverse problems of mathematical physics, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl

[24] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 | MR | MR | Zbl

[25] R. Bellman, K. L. Cooke, Differential-difference equations, Academic Press, New York–London, 1963 | MR | MR | Zbl | Zbl

[26] J. B. Conway, Functions of one complex variable. II, Grad. Texts in Math., 159, Springer-Verlag, New York, 1995 | MR | Zbl