Banach frames in the affine synthesis problem
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of representing functions $f\in L^p(\mathbb R^d)$ by a series in elements of the affine system $$ \psi_{j,k}(x)=\lvert\det a_j\rvert^{1/2}\psi(a_jx-bk), \qquad j\in\mathbb N, \quad k\in\mathbb Z^d. $$ The corresponding representation theorems are established on the basis of the frame inequalities $$ A\|g\|_q\le\|\{(g,\psi_{j,k})\}\|_Y\le B\|g\|_q $$ for the Fourier coefficients $\displaystyle(g,\psi_{j,k})=\int_{\mathbb R^d}g(x)\psi_{j,k}(x)\,dx$ of functions $g\in L^q(\mathbb R^d)$, $1/p+1/q=1$, where ${\|\cdot\|}_Y$ is the norm in some Banach space of number families $\{y_{j,k}\}$ and $0$ are constants. In particular, it is proved that if the integral of a function $\psi\in L^1\cap L^p(\mathbb R^d)$, $1$, is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates $\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation $$ f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}, $$ where the coefficients satisfy the condition $$ \sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p} \biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}\infty. $$ Bibliography: 19 titles.
Keywords: affine systems, affine synthesis, frames in a Banach space.
@article{SM_2009_200_9_a4,
     author = {P. A. Terekhin},
     title = {Banach frames in the affine synthesis problem},
     journal = {Sbornik. Mathematics},
     pages = {1383--1402},
     publisher = {mathdoc},
     volume = {200},
     number = {9},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Banach frames in the affine synthesis problem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1383
EP  - 1402
VL  - 200
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
LA  - en
ID  - SM_2009_200_9_a4
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Banach frames in the affine synthesis problem
%J Sbornik. Mathematics
%D 2009
%P 1383-1402
%V 200
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
%G en
%F SM_2009_200_9_a4
P. A. Terekhin. Banach frames in the affine synthesis problem. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/