, is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates $\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation $$ f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}, $$ where the coefficients satisfy the condition $$ \sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p} \biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}<\infty. $$ Bibliography: 19 titles.
@article{SM_2009_200_9_a4,
author = {P. A. Terekhin},
title = {Banach frames in the affine synthesis problem},
journal = {Sbornik. Mathematics},
pages = {1383--1402},
year = {2009},
volume = {200},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/}
}
P. A. Terekhin. Banach frames in the affine synthesis problem. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005
[2] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[3] J. Bruna, “On translation and affine systems spanning $L^1(\mathbb R)$”, J. Fourier Anal. Appl., 12:1 (2006), 71–82 | DOI | MR | Zbl
[4] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl | Zbl
[5] P.Ȧ. Terekhin, “Affine synthesis in the space $L^2(\mathbb R^d)$”, Izv. Math., 73:1 (2009), 171–180 | DOI | MR | Zbl
[6] P. A. Terëkhin, “Szhatiya i sdvigi funktsii s nenulevym integralom”, Matematika. Mekhanika, 1, Izd-vo Sarat. un-ta, Saratov, 1999, 67–68
[7] H.-Q. Bui, R. S. Laugesen, “Affine systems that span Lebesgue spaces”, J. Fourier Anal. Appl., 11:5 (2005), 533–556 | DOI | MR | Zbl
[8] N.-Q. Bui, R. S. Laugesen, Affine synthesis and coefficient norms for Lebesgue, Hardy and Sobolev spaces, http://www.math.uiuc.edu/ laugesen/coeffnorm4p3.pdf
[9] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 | DOI | MR | Zbl
[10] N. K. Bari, “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386
[11] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Matematika. Tom IV, Uchenye zapiski MGU, 148, 1951, 69–107 | MR
[12] K. Gröchenig, “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–42 | DOI | MR | Zbl
[13] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, The functional and harmonic analysis of wavelets and frames, Proceedings of the AMS special session (San Antonio, TX, USA, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 149–182 | MR | Zbl
[14] P. A. Terekhin, “Representation systems and projections of bases”, Math. Notes, 75:5–6 (2004), 881–884 | DOI | MR | Zbl
[15] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl
[16] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl
[17] S. L. Sobolev, Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR | Zbl
[18] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[19] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, vol. 1, 2, Frederick Ungar, New York, 1961–1963 | MR | MR | Zbl | Zbl