Banach frames in the affine synthesis problem
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of representing functions $f\in L^p(\mathbb R^d)$ by a series in elements of the affine system $$ \psi_{j,k}(x)=\lvert\det a_j\rvert^{1/2}\psi(a_jx-bk), \qquad j\in\mathbb N, \quad k\in\mathbb Z^d. $$ The corresponding representation theorems are established on the basis of the frame inequalities $$ A\|g\|_q\le\|\{(g,\psi_{j,k})\}\|_Y\le B\|g\|_q $$ for the Fourier coefficients $\displaystyle(g,\psi_{j,k})=\int_{\mathbb R^d}g(x)\psi_{j,k}(x)\,dx$ of functions $g\in L^q(\mathbb R^d)$, $1/p+1/q=1$, where ${\|\cdot\|}_Y$ is the norm in some Banach space of number families $\{y_{j,k}\}$ and $0 are constants. In particular, it is proved that if the integral of a function $\psi\in L^1\cap L^p(\mathbb R^d)$, $1, is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates $\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation $$ f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}, $$ where the coefficients satisfy the condition $$ \sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p} \biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}<\infty. $$ Bibliography: 19 titles.
Keywords: affine systems, affine synthesis, frames in a Banach space.
@article{SM_2009_200_9_a4,
     author = {P. A. Terekhin},
     title = {Banach frames in the affine synthesis problem},
     journal = {Sbornik. Mathematics},
     pages = {1383--1402},
     year = {2009},
     volume = {200},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/}
}
TY  - JOUR
AU  - P. A. Terekhin
TI  - Banach frames in the affine synthesis problem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1383
EP  - 1402
VL  - 200
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
LA  - en
ID  - SM_2009_200_9_a4
ER  - 
%0 Journal Article
%A P. A. Terekhin
%T Banach frames in the affine synthesis problem
%J Sbornik. Mathematics
%D 2009
%P 1383-1402
%V 200
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
%G en
%F SM_2009_200_9_a4
P. A. Terekhin. Banach frames in the affine synthesis problem. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/

[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[2] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[3] J. Bruna, “On translation and affine systems spanning $L^1(\mathbb R)$”, J. Fourier Anal. Appl., 12:1 (2006), 71–82 | DOI | MR | Zbl

[4] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl | Zbl

[5] P.Ȧ. Terekhin, “Affine synthesis in the space $L^2(\mathbb R^d)$”, Izv. Math., 73:1 (2009), 171–180 | DOI | MR | Zbl

[6] P. A. Terëkhin, “Szhatiya i sdvigi funktsii s nenulevym integralom”, Matematika. Mekhanika, 1, Izd-vo Sarat. un-ta, Saratov, 1999, 67–68

[7] H.-Q. Bui, R. S. Laugesen, “Affine systems that span Lebesgue spaces”, J. Fourier Anal. Appl., 11:5 (2005), 533–556 | DOI | MR | Zbl

[8] N.-Q. Bui, R. S. Laugesen, Affine synthesis and coefficient norms for Lebesgue, Hardy and Sobolev spaces, http://www.math.uiuc.edu/ laugesen/coeffnorm4p3.pdf

[9] R. J. Duffin, A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72:2 (1952), 341–366 | DOI | MR | Zbl

[10] N. K. Bari, “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386

[11] N. K. Bari, “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Matematika. Tom IV, Uchenye zapiski MGU, 148, 1951, 69–107 | MR

[12] K. Gröchenig, “Describing functions: atomic decompositions versus frames”, Monatsh. Math., 112:1 (1991), 1–42 | DOI | MR | Zbl

[13] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, The functional and harmonic analysis of wavelets and frames, Proceedings of the AMS special session (San Antonio, TX, USA, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 149–182 | MR | Zbl

[14] P. A. Terekhin, “Representation systems and projections of bases”, Math. Notes, 75:5–6 (2004), 881–884 | DOI | MR | Zbl

[15] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl

[16] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl

[17] S. L. Sobolev, Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR | Zbl

[18] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[19] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, vol. 1, 2, Frederick Ungar, New York, 1961–1963 | MR | MR | Zbl | Zbl