Banach frames in the affine synthesis problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of representing functions $f\in L^p(\mathbb R^d)$ by a series in elements of the affine system
$$
\psi_{j,k}(x)=\lvert\det a_j\rvert^{1/2}\psi(a_jx-bk), \qquad j\in\mathbb N, \quad k\in\mathbb Z^d.
$$
The corresponding representation theorems are established on the basis of the frame inequalities
$$
A\|g\|_q\le\|\{(g,\psi_{j,k})\}\|_Y\le B\|g\|_q
$$
for the Fourier coefficients $\displaystyle(g,\psi_{j,k})=\int_{\mathbb R^d}g(x)\psi_{j,k}(x)\,dx$
of functions $g\in L^q(\mathbb R^d)$, $1/p+1/q=1$, where ${\|\cdot\|}_Y$ is the norm in some Banach
space of number families $\{y_{j,k}\}$ and $0$ are constants.
In particular, it is proved that if the integral of a function $\psi\in L^1\cap L^p(\mathbb R^d)$, $1$,
is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates
$\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation
$$
f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k},
$$
where the coefficients satisfy the condition 
$$
\sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p}
\biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}\infty.
$$ Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
affine systems, affine synthesis, frames in a Banach space.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_9_a4,
     author = {P. A. Terekhin},
     title = {Banach frames in the affine synthesis problem},
     journal = {Sbornik. Mathematics},
     pages = {1383--1402},
     publisher = {mathdoc},
     volume = {200},
     number = {9},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/}
}
                      
                      
                    P. A. Terekhin. Banach frames in the affine synthesis problem. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1383-1402. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a4/
