The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1353-1382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbb D$ be the unit disc in the complex plane $\mathbb C$ and $H$ a class of holomorphic functions in $\mathbb D$ distinguished by a restriction on their growth in a neighbourhood of the boundary of the disc which is stated in terms of weight functions of moderate growth. Some results which describe the sequences of zeros for holomorphic functions in classes $H$ of this type are obtained. The weight functions defining $H$ are not necessarily radial; however the results obtained are new even in the case of radial constraints. Conditions for meromorphic functions in $\mathbb D$ ensuring that they can be represented as a ratio of two functions in $H$ sharing no zeros are investigated. Bibliography: 28 titles.
Keywords: unit disc, holomorphic function, sequence of zeros, weighed space, representation of a meromorphic function, subharmonic functions, Green's function.
@article{SM_2009_200_9_a3,
     author = {E. G. Kudasheva and B. N. Khabibullin},
     title = {The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation},
     journal = {Sbornik. Mathematics},
     pages = {1353--1382},
     year = {2009},
     volume = {200},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/}
}
TY  - JOUR
AU  - E. G. Kudasheva
AU  - B. N. Khabibullin
TI  - The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1353
EP  - 1382
VL  - 200
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/
LA  - en
ID  - SM_2009_200_9_a3
ER  - 
%0 Journal Article
%A E. G. Kudasheva
%A B. N. Khabibullin
%T The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation
%J Sbornik. Mathematics
%D 2009
%P 1353-1382
%V 200
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/
%G en
%F SM_2009_200_9_a3
E. G. Kudasheva; B. N. Khabibullin. The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1353-1382. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/

[1] L. Schwartz, Analyse mathématique. I, Hermann, Paris, 1967 | MR | Zbl | Zbl

[2] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. 1, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl

[3] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[4] P. Koosis, Introduction to $H^p$ spaces with an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | MR | Zbl | Zbl

[5] W. K. Hayman, Meromorphic functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964 | MR | MR | Zbl | Zbl

[6] M. Tsuji, Potential theory in modern function theory, Chelsea Publ. Co., New York, 1975 | MR | Zbl

[7] Th. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants”, Sb. Math., 198:2 (2007), 261–298 | DOI | MR | Zbl

[9] G. Bomash, “A Blaschke-type product and random zero sets for Bergman spaces”, Ark. Mat., 30:1–2 (1992), 45–60 | DOI | MR | Zbl

[10] E. Beller, C. Horowitz, “Zero sets and random zero sets in certain function spaces”, J. Anal. Math., 64:1 (1994), 203–217 | DOI | MR | Zbl

[11] E. Beller, “Factorization for non-nevanlinna classes of analytic functions”, Israel J. Math., 27:3–4 (1977), 320–330 | DOI | MR | Zbl

[12] A. Borichev, H. Hedenmalm, “Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces”, J. Amer. Math. Soc., 10:4 (1997), 761–796 | DOI | MR | Zbl

[13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[14] Yu. I. Lyubarskii, K. Seip, “A uniqueness theorem for bounded analytic functions”, Bull. London Math. Soc., 29:1 (1997), 49–52 | DOI | MR | Zbl

[15] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[16] V. Ya. Eiderman, E. Matts, “Uniqueness theorems for analytic and subharmonic functions”, St. Petersburg Math. J., 14:6 (2002), 889–952 | MR | Zbl

[17] B. N. Khabibullin, “Criteria for (sub-)harmonicity and continuation of (sub-)harmonic functions”, Siberian Math. J., 44:4 (2003), 713–728 | DOI | MR | Zbl

[18] B. Korenblum, “An extension of the Nevanlinna theory”, Acta Math., 135:1 (1975), 187–219 | DOI | MR | Zbl

[19] K. Seip, “On a theorem of Korenblum”, Ark. Mat., 32:1 (1994), 237–243 | DOI | MR | Zbl

[20] K. Seip, “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67:1 (1995), 307–322 | DOI | MR | Zbl

[21] K. Seip, “An extension of the Blaschke condition”, J. London Math. Soc. (2), 51:3 (1995), 545–558 | MR | Zbl

[22] D. Pascuas, Zeros interpolació en espais de funcions holomorfes del disc unitat, Tesi doctoral, Universitat Autónoma de Barcelona, 1988

[23] J. Bruna, X. Massaneda, “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66:1 (1995), 217–252 | DOI | MR | Zbl

[24] D. H. Luecking, “Zero sequences for Bergman spaces”, Complex Variables Theory Appl., 30:4 (1996), 345–362 | DOI | MR | Zbl

[25] O. Blasco, A. Kukuryka, M. Nowak, “Luecking's condition for zeros of analytic functions”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 58 (2004), 1–15 | MR | Zbl

[26] L. Yu. Cherednikova, “Nonuniqueness sequences for weighted algebras of holomorphic functions in the unit circle”, Math. Notes, 77:5–6 (2005), 715–725 | DOI | MR | Zbl

[27] B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, “Subsequences of zeros for classes of holomorphic functions, their stability, and the entropy of arcwise connectedness. II”, St. Petersburg Math. J., 20:1 (2009), 131–162 | DOI | MR

[28] F. A. Shamoyan, “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakteristika nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Matem., 13:5–6 (1978), 405–422 | MR | Zbl