@article{SM_2009_200_9_a3,
author = {E. G. Kudasheva and B. N. Khabibullin},
title = {The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation},
journal = {Sbornik. Mathematics},
pages = {1353--1382},
year = {2009},
volume = {200},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/}
}
TY - JOUR AU - E. G. Kudasheva AU - B. N. Khabibullin TI - The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation JO - Sbornik. Mathematics PY - 2009 SP - 1353 EP - 1382 VL - 200 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/ LA - en ID - SM_2009_200_9_a3 ER -
%0 Journal Article %A E. G. Kudasheva %A B. N. Khabibullin %T The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation %J Sbornik. Mathematics %D 2009 %P 1353-1382 %V 200 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/ %G en %F SM_2009_200_9_a3
E. G. Kudasheva; B. N. Khabibullin. The distribution of the zeros of holomorphic functions of moderate growth in the unit disc and the representation. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1353-1382. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a3/
[1] L. Schwartz, Analyse mathématique. I, Hermann, Paris, 1967 | MR | Zbl | Zbl
[2] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. 1, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl
[3] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl
[4] P. Koosis, Introduction to $H^p$ spaces with an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | MR | Zbl | Zbl
[5] W. K. Hayman, Meromorphic functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964 | MR | MR | Zbl | Zbl
[6] M. Tsuji, Potential theory in modern function theory, Chelsea Publ. Co., New York, 1975 | MR | Zbl
[7] Th. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[8] B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants”, Sb. Math., 198:2 (2007), 261–298 | DOI | MR | Zbl
[9] G. Bomash, “A Blaschke-type product and random zero sets for Bergman spaces”, Ark. Mat., 30:1–2 (1992), 45–60 | DOI | MR | Zbl
[10] E. Beller, C. Horowitz, “Zero sets and random zero sets in certain function spaces”, J. Anal. Math., 64:1 (1994), 203–217 | DOI | MR | Zbl
[11] E. Beller, “Factorization for non-nevanlinna classes of analytic functions”, Israel J. Math., 27:3–4 (1977), 320–330 | DOI | MR | Zbl
[12] A. Borichev, H. Hedenmalm, “Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces”, J. Amer. Math. Soc., 10:4 (1997), 761–796 | DOI | MR | Zbl
[13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl
[14] Yu. I. Lyubarskii, K. Seip, “A uniqueness theorem for bounded analytic functions”, Bull. London Math. Soc., 29:1 (1997), 49–52 | DOI | MR | Zbl
[15] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl
[16] V. Ya. Eiderman, E. Matts, “Uniqueness theorems for analytic and subharmonic functions”, St. Petersburg Math. J., 14:6 (2002), 889–952 | MR | Zbl
[17] B. N. Khabibullin, “Criteria for (sub-)harmonicity and continuation of (sub-)harmonic functions”, Siberian Math. J., 44:4 (2003), 713–728 | DOI | MR | Zbl
[18] B. Korenblum, “An extension of the Nevanlinna theory”, Acta Math., 135:1 (1975), 187–219 | DOI | MR | Zbl
[19] K. Seip, “On a theorem of Korenblum”, Ark. Mat., 32:1 (1994), 237–243 | DOI | MR | Zbl
[20] K. Seip, “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67:1 (1995), 307–322 | DOI | MR | Zbl
[21] K. Seip, “An extension of the Blaschke condition”, J. London Math. Soc. (2), 51:3 (1995), 545–558 | MR | Zbl
[22] D. Pascuas, Zeros interpolació en espais de funcions holomorfes del disc unitat, Tesi doctoral, Universitat Autónoma de Barcelona, 1988
[23] J. Bruna, X. Massaneda, “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66:1 (1995), 217–252 | DOI | MR | Zbl
[24] D. H. Luecking, “Zero sequences for Bergman spaces”, Complex Variables Theory Appl., 30:4 (1996), 345–362 | DOI | MR | Zbl
[25] O. Blasco, A. Kukuryka, M. Nowak, “Luecking's condition for zeros of analytic functions”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 58 (2004), 1–15 | MR | Zbl
[26] L. Yu. Cherednikova, “Nonuniqueness sequences for weighted algebras of holomorphic functions in the unit circle”, Math. Notes, 77:5–6 (2005), 715–725 | DOI | MR | Zbl
[27] B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, “Subsequences of zeros for classes of holomorphic functions, their stability, and the entropy of arcwise connectedness. II”, St. Petersburg Math. J., 20:1 (2009), 131–162 | DOI | MR
[28] F. A. Shamoyan, “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakteristika nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Matem., 13:5–6 (1978), 405–422 | MR | Zbl