The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1339-1351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An arbitrary strictly non-Volterra quadratic operator on the 2-simplex is shown to have a unique fixed point, which is established as being nonattracting. A description of the $\omega$-limit set of the trajectory of some subclasses of these operators is obtained. Strictly non-Volterra operators, as distinct from the Volterra operators, are shown to have cyclic trajectories. For two particular operators, we show that there exists a cyclic trajectory with period 3. Each trajectory which starts at the boundary of the simplex converges to this cyclic trajectory, whereas trajectories which begin at an interior point of the simplex (not at the fixed point) must diverge. Furthermore, the $\omega$-limit set of such a trajectory is infinite, and lies at the boundary of the simplex. Also, we study subclasses of strictly non-Volterra operators whose trajectories tend to a cyclic trajectory with period 2. Bibliography: 18 titles.
Keywords: quadratic stochastic operators; simplex; trajectory.
@article{SM_2009_200_9_a2,
     author = {U. U. Zhamilov and U. A. Rozikov},
     title = {The dynamics of strictly {non-Volterra} quadratic stochastic operators on the 2-simplex},
     journal = {Sbornik. Mathematics},
     pages = {1339--1351},
     year = {2009},
     volume = {200},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/}
}
TY  - JOUR
AU  - U. U. Zhamilov
AU  - U. A. Rozikov
TI  - The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1339
EP  - 1351
VL  - 200
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/
LA  - en
ID  - SM_2009_200_9_a2
ER  - 
%0 Journal Article
%A U. U. Zhamilov
%A U. A. Rozikov
%T The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex
%J Sbornik. Mathematics
%D 2009
%P 1339-1351
%V 200
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/
%G en
%F SM_2009_200_9_a2
U. U. Zhamilov; U. A. Rozikov. The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1339-1351. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/

[1] R. N. Ganikhodzhaev, “Quadratic stochastic operators, Lyapunov functions, and tournaments”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 489–506 | DOI | MR | Zbl | Zbl

[2] R. N. Ganikhodzhaev, A. T. Sarimsakov, “Matematicheskaya model kaolitsii biologicheskikh sistem”, Dokl. AN UzSSR, 1992, no. 3, 14–17

[3] R. N. Ganikhodzhaev, “Ob odnom semeistve kvadratichnykh stokhasticheskikh operatorov, deistvuyuschikh v $S^2$”, Dokl. AN UzSSR, 1989, no. 1, 3–5 | MR | Zbl

[4] R. N. Ganikhodzhaev, D. B. Eshmamatova, “Kvadratichnye avtomorfizmy simpleksa i asimptoticheskoe povedenie ikh traektorii”, Vladikavkaz. matem. zhurn., 8:2 (2006), 12–28 | MR

[5] S. N. Bernshtein, “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledovannosti”, Uchenye zapiski nauch.-issled. kafedry Ukrainy. Otdelenie matem., 1924, no. 1, 83–115

[6] S. M. Ulam, A collection of mathematical problems, New York–London, Interscience Publ., 1960 | MR | Zbl

[7] S. S. Vallander, “On the limit behavior of iteration sequences of certain quadratic transformations”, Soviet Math. Dokl., 13 (1972), 123–126 | MR | Zbl

[8] Yu. I. Lyubich, Matematicheskie struktury v populyatsionnoi genetike, Naukova dumka, Kiev, 1983 | MR | Zbl

[9] R. D. Jenks, “Quadratic differential systems for interactive population models”, J. Differential Equations, 5:3 (1969), 497–514 | DOI | MR | Zbl

[10] H. Kesten, “Quadratic transformations: a model for population growth. I”, Advances in Appl. Probability, 2:1 (1970), 1–82 | DOI | MR | Zbl

[11] H. Kesten, “Quadratic transformations: a model for population growth. II”, Advances in Appl. Probability, 2:2 (1970), 179–228 | DOI | MR | Zbl

[12] F. M. Mukhamedov, “Infinite-dimensional quadratic Volterra operators”, Russian Math. Surveys, 55:6 (2000), 1161–1162 | DOI | MR | Zbl

[13] R. T. Mukhitdinov, “O strogo nevolterrovskom kvadratichnom operatore”, Tezisy dokladov mezhdunarodnoi konferentsii “Operatornye algebry i kvantovaya teoriya veroyatnostei” (Tashkent, 2005), Universitet, Tashkent, 2005, 134–135

[14] J. Hofbauer, K. Sigmund, The theory of evolution and dynamical systems. Mathematical aspects of selection, London Math. Soc. Stud. Texts, 7, Cambridge Univ. Press., Cambridge, 1988 | MR | Zbl

[15] N. N. Ganikhodzhaev, D. V. Zanin, “On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex”, Russian Math. Surveys, 59:3 (2004), 571–572 | DOI | MR | Zbl

[16] N. N. Ganikhodzhaev, U. A. Rozikov, “On quadratic stochastic operators generated by Gibbs distributions”, Regul. Chaotic Dyn., 11:4 (2006), 467–473 | DOI | MR | Zbl

[17] U. A. Rozikov, U. U. Zhamilov, “$F$-quadratic stochastic operators”, Math. Notes, 83:3–4 (2008), 554–559 | DOI | MR | Zbl

[18] R. L. Devaney, An introduction to chaotic dynamical systems, Stud. Nonlinearity, Westview Press, Boulder, CO, 2003 | MR | Zbl