@article{SM_2009_200_9_a2,
author = {U. U. Zhamilov and U. A. Rozikov},
title = {The dynamics of strictly {non-Volterra} quadratic stochastic operators on the 2-simplex},
journal = {Sbornik. Mathematics},
pages = {1339--1351},
year = {2009},
volume = {200},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/}
}
TY - JOUR AU - U. U. Zhamilov AU - U. A. Rozikov TI - The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex JO - Sbornik. Mathematics PY - 2009 SP - 1339 EP - 1351 VL - 200 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/ LA - en ID - SM_2009_200_9_a2 ER -
U. U. Zhamilov; U. A. Rozikov. The dynamics of strictly non-Volterra quadratic stochastic operators on the 2-simplex. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1339-1351. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a2/
[1] R. N. Ganikhodzhaev, “Quadratic stochastic operators, Lyapunov functions, and tournaments”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 489–506 | DOI | MR | Zbl | Zbl
[2] R. N. Ganikhodzhaev, A. T. Sarimsakov, “Matematicheskaya model kaolitsii biologicheskikh sistem”, Dokl. AN UzSSR, 1992, no. 3, 14–17
[3] R. N. Ganikhodzhaev, “Ob odnom semeistve kvadratichnykh stokhasticheskikh operatorov, deistvuyuschikh v $S^2$”, Dokl. AN UzSSR, 1989, no. 1, 3–5 | MR | Zbl
[4] R. N. Ganikhodzhaev, D. B. Eshmamatova, “Kvadratichnye avtomorfizmy simpleksa i asimptoticheskoe povedenie ikh traektorii”, Vladikavkaz. matem. zhurn., 8:2 (2006), 12–28 | MR
[5] S. N. Bernshtein, “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledovannosti”, Uchenye zapiski nauch.-issled. kafedry Ukrainy. Otdelenie matem., 1924, no. 1, 83–115
[6] S. M. Ulam, A collection of mathematical problems, New York–London, Interscience Publ., 1960 | MR | Zbl
[7] S. S. Vallander, “On the limit behavior of iteration sequences of certain quadratic transformations”, Soviet Math. Dokl., 13 (1972), 123–126 | MR | Zbl
[8] Yu. I. Lyubich, Matematicheskie struktury v populyatsionnoi genetike, Naukova dumka, Kiev, 1983 | MR | Zbl
[9] R. D. Jenks, “Quadratic differential systems for interactive population models”, J. Differential Equations, 5:3 (1969), 497–514 | DOI | MR | Zbl
[10] H. Kesten, “Quadratic transformations: a model for population growth. I”, Advances in Appl. Probability, 2:1 (1970), 1–82 | DOI | MR | Zbl
[11] H. Kesten, “Quadratic transformations: a model for population growth. II”, Advances in Appl. Probability, 2:2 (1970), 179–228 | DOI | MR | Zbl
[12] F. M. Mukhamedov, “Infinite-dimensional quadratic Volterra operators”, Russian Math. Surveys, 55:6 (2000), 1161–1162 | DOI | MR | Zbl
[13] R. T. Mukhitdinov, “O strogo nevolterrovskom kvadratichnom operatore”, Tezisy dokladov mezhdunarodnoi konferentsii “Operatornye algebry i kvantovaya teoriya veroyatnostei” (Tashkent, 2005), Universitet, Tashkent, 2005, 134–135
[14] J. Hofbauer, K. Sigmund, The theory of evolution and dynamical systems. Mathematical aspects of selection, London Math. Soc. Stud. Texts, 7, Cambridge Univ. Press., Cambridge, 1988 | MR | Zbl
[15] N. N. Ganikhodzhaev, D. V. Zanin, “On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex”, Russian Math. Surveys, 59:3 (2004), 571–572 | DOI | MR | Zbl
[16] N. N. Ganikhodzhaev, U. A. Rozikov, “On quadratic stochastic operators generated by Gibbs distributions”, Regul. Chaotic Dyn., 11:4 (2006), 467–473 | DOI | MR | Zbl
[17] U. A. Rozikov, U. U. Zhamilov, “$F$-quadratic stochastic operators”, Math. Notes, 83:3–4 (2008), 554–559 | DOI | MR | Zbl
[18] R. L. Devaney, An introduction to chaotic dynamical systems, Stud. Nonlinearity, Westview Press, Boulder, CO, 2003 | MR | Zbl