On the multiplicative and $T$-space structure of the relatively free Grassmann algebra
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1299-1338

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the multiplicative and $T$-space structure of the relatively free algebra $F^{(3)}$ with unity corresponding to the identity $[[x_1,x_2],x_3]=0$ over an infinite field of characteristic $p>0$. One of the basic results is the decomposition of quotient $T$-spaces connected with $F^{(3)}$ into a direct sum of simple components. Also, the $T$-spaces under consideration are commutative subalgebras of $F^{(3)}$; thus, the structure of $F^{(3)}$ and its subalgebras is described as modules over these commutative subalgebras. Finally, we consider the specifics of the case $p=2$. Bibliography: 15 titles.
Keywords: $T$-space, $T$-ideal, $n$-word, canonical basis, relatively free Grassmann algebra.
@article{SM_2009_200_9_a1,
     author = {A. V. Grishin and L. M. Tsybulya},
     title = {On the multiplicative and $T$-space structure of the relatively free {Grassmann} algebra},
     journal = {Sbornik. Mathematics},
     pages = {1299--1338},
     publisher = {mathdoc},
     volume = {200},
     number = {9},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a1/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - L. M. Tsybulya
TI  - On the multiplicative and $T$-space structure of the relatively free Grassmann algebra
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1299
EP  - 1338
VL  - 200
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a1/
LA  - en
ID  - SM_2009_200_9_a1
ER  - 
%0 Journal Article
%A A. V. Grishin
%A L. M. Tsybulya
%T On the multiplicative and $T$-space structure of the relatively free Grassmann algebra
%J Sbornik. Mathematics
%D 2009
%P 1299-1338
%V 200
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a1/
%G en
%F SM_2009_200_9_a1
A. V. Grishin; L. M. Tsybulya. On the multiplicative and $T$-space structure of the relatively free Grassmann algebra. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1299-1338. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a1/