Mots-clés : orthogonal polynomials
@article{SM_2009_200_9_a0,
author = {L. Baratchart and M. L. Yattselev},
title = {Meromorphic approximants to complex {Cauchy} transforms with polar singularities},
journal = {Sbornik. Mathematics},
pages = {1261--1297},
year = {2009},
volume = {200},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/}
}
L. Baratchart; M. L. Yattselev. Meromorphic approximants to complex Cauchy transforms with polar singularities. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1261-1297. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/
[1] V. M. Adamjan, D. Z. Arov, M. G. Kreǐn, “Analytic properties of schmidt pairs for a hankel operator and the generalized Schur–Takagi problem”, Math. USSR-Sb., 15:1 (1971), 31–73 | DOI | MR | Zbl | Zbl
[2] L. Baratchart, F. Mandréa, E. B. Saff, F. Wielonsky, “2-D inverse problems for the Laplacian: A meromorphic approximation approach”, J. Math. Pures Appl. (9), 86:1 (2006), 1–41 | DOI | MR | Zbl
[3] L. Baratchart, F. Seyfert, “An $L^p$ analog to AAK theory for $p\ge2$”, J. Funct. Anal., 191:1 (2002), 52–122 | DOI | MR | Zbl
[4] V. A. Prokhorov, “On $L^p$-generalization of a theorem of Adamyan, Arov, and Krein”, J. Approx. Theory, 116:2 (2002), 380–396 | DOI | MR | Zbl
[5] K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their $L^\infty$-error bounds”, Internat. J. Control, 39:6 (1984), 1115–1193 | DOI | MR | Zbl
[6] A. A. Gonchar, “Rational approximation of analytic functions”, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI
[7] V. A. Prokhorov, “On a theorem of Adamyan, Arov, and Kreǐn”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 77–90 | DOI | MR | Zbl
[8] V. V. Peller, “Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl | Zbl
[9] V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 | DOI | MR | Zbl
[10] D. Braess, “Rational approximation of Stieltjes functions by the Carathéodory–Fejér method”, Constr. Approx., 3:1 (1987), 43–50 | DOI | MR | Zbl
[11] J. E. Andersson, “Best rational approximation to Markov functions”, J. Approx. Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl
[12] A. L. Levin, “The distribution of poles of rational functions of best approximation and related questions”, Math. USSR-Sb., 9:2 (1969), 267–274 | DOI | MR | Zbl | Zbl
[13] L. Baratchart, E. B. Saff, F. Wielonsky, “A criterion for uniqueness of a critical point in $H_2$ rational approximation”, J. Anal. Math., 70:1 (1996), 225–266 | DOI | MR | Zbl
[14] A. A. Gončar, G. L. Lopes, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl
[15] L. Baratchart, H. Stahl, F. Wielonsky, “Asymptotic error estimates for $L^2$ best rational approximants to Markov functions”, J. Approx. Theory, 108:1 (2001), 53–96 | DOI | MR | Zbl
[16] L. Baratchart, V. A. Prokhorov, E. B. Saff, “Best meromorphic approximation of Markov functions on the unit circle”, Found. Comput. Math., 1:4 (2001), 385–416 | DOI | MR | Zbl
[17] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl
[18] M. Yattselev, Meromorphic approximation and non-Hermitian orthogonality, Ph. D. Thesis, Nashville, TN, 2007
[19] L. Baratchart, M. Yattselev, “Multipoint Padé approximants to complex Cauchy transforms with polar singularities”, J. Approx. Theory, 156:2 (2009), 187–211 | DOI | MR | Zbl
[20] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl
[21] N. Young, An introduction to Hilbert space, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[22] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003 | MR | Zbl
[23] L. Baratchart, R. Küstner, V. Totik, “Zero distributions via orthogonality”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1455–1499 | MR | Zbl
[24] R. Küstner, Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation, Ph. D. Thesis, Sophia Antipolis France, 2003
[25] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[26] M. J. D. Powell, Approximation theory and methods, Cambridge Univ. Press, Cambridge–New York, 1981 | MR | Zbl
[27] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl
[28] A. Ancona, “Démonstration d'une conjecture sur la capacité et l'effilement”, C. R. Acad. Sci. Paris Sér. I Math., 297:7 (1983), 393–395 | MR | Zbl
[29] A. Ancona, Sur une conjecture concernant la capacité et l'effilement, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., 1096, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl
[30] Th. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[31] A. A. Gončar, “On the convergence of generalized Padé approximants of meromorphic functions”, Math. USSR-Sb., 27:4 (1975), 503–514 | DOI | MR | Zbl | Zbl
[32] J. R. Partington, An introduction to Hankel operators, London Math. Soc. Stud. Texts, 13, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[33] E. Hayashi, L. N. Trefethen, M. H. Gutknecht, “The CF table”, Constr. Approx., 6:2 (1990), 195–223 | DOI | MR | Zbl
[34] L. Baratchart, J. Leblond, J. R. Partington, “Problems of Adamjan–Arov–Krein type on subsets of the circle and minimal norm extensions”, Constr. Approx., 16:3 (2000), 333–358 | DOI | MR | Zbl
[35] J. Grimm, Rational approximation of transfer functions in the hyperion software, 2000; INRIA report no. 4002