Meromorphic approximants to complex Cauchy transforms with polar singularities
Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1261-1297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study AAK-type meromorphic approximants to functions of the form $$ F(z)=\int\frac{d\lambda(t)}{z-t}+R(z), $$ where $R$ is a rational function and $\lambda$ is a complex measure with compact regular support included in $(-1,1)$, whose argument has bounded variation on the support. The approximation is understood in the $L^p$-norm of the unit circle, $p\geqslant2$. We dwell on the fact that the denominators of such approximants satisfy certain non-Hermitian orthogonal relations with varying weights. They resemble the orthogonality relations that arise in the study of multipoint Padé approximants. However, the varying part of the weight implicitly depends on the orthogonal polynomials themselves, which constitutes the main novelty and the main difficulty of the undertaken analysis. We obtain that the counting measures of poles of the approximants converge to the Green equilibrium distribution on the support of $\lambda$ relative to the unit disc, that the approximants themselves converge in capacity to $F$, and that the poles of $R$ attract at least as many poles of the approximants as their multiplicity and not much more. Bibliography: 35 titles.
Keywords: meromorphic approximation, AAK-theory, rational approximation, non-Hermitian orthogonality, Hardy spaces, critical points.
Mots-clés : orthogonal polynomials
@article{SM_2009_200_9_a0,
     author = {L. Baratchart and M. L. Yattselev},
     title = {Meromorphic approximants to complex {Cauchy} transforms with polar singularities},
     journal = {Sbornik. Mathematics},
     pages = {1261--1297},
     year = {2009},
     volume = {200},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/}
}
TY  - JOUR
AU  - L. Baratchart
AU  - M. L. Yattselev
TI  - Meromorphic approximants to complex Cauchy transforms with polar singularities
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1261
EP  - 1297
VL  - 200
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/
LA  - en
ID  - SM_2009_200_9_a0
ER  - 
%0 Journal Article
%A L. Baratchart
%A M. L. Yattselev
%T Meromorphic approximants to complex Cauchy transforms with polar singularities
%J Sbornik. Mathematics
%D 2009
%P 1261-1297
%V 200
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/
%G en
%F SM_2009_200_9_a0
L. Baratchart; M. L. Yattselev. Meromorphic approximants to complex Cauchy transforms with polar singularities. Sbornik. Mathematics, Tome 200 (2009) no. 9, pp. 1261-1297. http://geodesic.mathdoc.fr/item/SM_2009_200_9_a0/

[1] V. M. Adamjan, D. Z. Arov, M. G. Kreǐn, “Analytic properties of schmidt pairs for a hankel operator and the generalized Schur–Takagi problem”, Math. USSR-Sb., 15:1 (1971), 31–73 | DOI | MR | Zbl | Zbl

[2] L. Baratchart, F. Mandréa, E. B. Saff, F. Wielonsky, “2-D inverse problems for the Laplacian: A meromorphic approximation approach”, J. Math. Pures Appl. (9), 86:1 (2006), 1–41 | DOI | MR | Zbl

[3] L. Baratchart, F. Seyfert, “An $L^p$ analog to AAK theory for $p\ge2$”, J. Funct. Anal., 191:1 (2002), 52–122 | DOI | MR | Zbl

[4] V. A. Prokhorov, “On $L^p$-generalization of a theorem of Adamyan, Arov, and Krein”, J. Approx. Theory, 116:2 (2002), 380–396 | DOI | MR | Zbl

[5] K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their $L^\infty$-error bounds”, Internat. J. Control, 39:6 (1984), 1115–1193 | DOI | MR | Zbl

[6] A. A. Gonchar, “Rational approximation of analytic functions”, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI

[7] V. A. Prokhorov, “On a theorem of Adamyan, Arov, and Kreǐn”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 77–90 | DOI | MR | Zbl

[8] V. V. Peller, “Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl | Zbl

[9] V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 | DOI | MR | Zbl

[10] D. Braess, “Rational approximation of Stieltjes functions by the Carathéodory–Fejér method”, Constr. Approx., 3:1 (1987), 43–50 | DOI | MR | Zbl

[11] J. E. Andersson, “Best rational approximation to Markov functions”, J. Approx. Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl

[12] A. L. Levin, “The distribution of poles of rational functions of best approximation and related questions”, Math. USSR-Sb., 9:2 (1969), 267–274 | DOI | MR | Zbl | Zbl

[13] L. Baratchart, E. B. Saff, F. Wielonsky, “A criterion for uniqueness of a critical point in $H_2$ rational approximation”, J. Anal. Math., 70:1 (1996), 225–266 | DOI | MR | Zbl

[14] A. A. Gončar, G. L. Lopes, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl

[15] L. Baratchart, H. Stahl, F. Wielonsky, “Asymptotic error estimates for $L^2$ best rational approximants to Markov functions”, J. Approx. Theory, 108:1 (2001), 53–96 | DOI | MR | Zbl

[16] L. Baratchart, V. A. Prokhorov, E. B. Saff, “Best meromorphic approximation of Markov functions on the unit circle”, Found. Comput. Math., 1:4 (2001), 385–416 | DOI | MR | Zbl

[17] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[18] M. Yattselev, Meromorphic approximation and non-Hermitian orthogonality, Ph. D. Thesis, Nashville, TN, 2007

[19] L. Baratchart, M. Yattselev, “Multipoint Padé approximants to complex Cauchy transforms with polar singularities”, J. Approx. Theory, 156:2 (2009), 187–211 | DOI | MR | Zbl

[20] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[21] N. Young, An introduction to Hilbert space, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[22] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003 | MR | Zbl

[23] L. Baratchart, R. Küstner, V. Totik, “Zero distributions via orthogonality”, Ann. Inst. Fourier (Grenoble), 55:5 (2005), 1455–1499 | MR | Zbl

[24] R. Küstner, Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation, Ph. D. Thesis, Sophia Antipolis France, 2003

[25] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[26] M. J. D. Powell, Approximation theory and methods, Cambridge Univ. Press, Cambridge–New York, 1981 | MR | Zbl

[27] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[28] A. Ancona, “Démonstration d'une conjecture sur la capacité et l'effilement”, C. R. Acad. Sci. Paris Sér. I Math., 297:7 (1983), 393–395 | MR | Zbl

[29] A. Ancona, Sur une conjecture concernant la capacité et l'effilement, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., 1096, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl

[30] Th. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[31] A. A. Gončar, “On the convergence of generalized Padé approximants of meromorphic functions”, Math. USSR-Sb., 27:4 (1975), 503–514 | DOI | MR | Zbl | Zbl

[32] J. R. Partington, An introduction to Hankel operators, London Math. Soc. Stud. Texts, 13, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[33] E. Hayashi, L. N. Trefethen, M. H. Gutknecht, “The CF table”, Constr. Approx., 6:2 (1990), 195–223 | DOI | MR | Zbl

[34] L. Baratchart, J. Leblond, J. R. Partington, “Problems of Adamjan–Arov–Krein type on subsets of the circle and minimal norm extensions”, Constr. Approx., 16:3 (2000), 333–358 | DOI | MR | Zbl

[35] J. Grimm, Rational approximation of transfer functions in the hyperion software, 2000; INRIA report no. 4002