Mots-clés : Markov partitions
@article{SM_2009_200_8_a6,
author = {A. V. Klimenko},
title = {The number of classes of {Markov} partitions for a~hyperbolic automorphism of a~2-torus},
journal = {Sbornik. Mathematics},
pages = {1247--1259},
year = {2009},
volume = {200},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/}
}
A. V. Klimenko. The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1247-1259. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/
[1] R. L. Adler, B. Weiss, “Entropy, a complete metric invariant for automorphisms of the torus”, Proc. Nat. Acad. Sci. U.S.A., 57:6 (1967), 1573–1576 | DOI | MR | Zbl
[2] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[3] D. Ornstein, “Bernoulli shifts with the same entropy are isomorphic”, Advances in Math., 4:3 (1970), 337–352 | DOI | MR | Zbl
[4] D. V. Anosov, A. V. Klimenko, G. Kolutsky, On the hyperbolic automorphisms of the 2-torus and their Markov partitions, preprint MPIM2008-54, Max-Planck-Institut für Mathematik, Bonn, 2008
[5] E. Rykken, “Markov partitions for hyperbolic toral automorphisms of $\mathbb T^2$”, Rocky Mountain J. Math., 28:3 (1998), 1103–1124 | DOI | MR | Zbl
[6] A. Ya. Khinchin, Continued fractions, Dover Publ., Mineola, NY, 1997 | MR | MR | Zbl | Zbl
[7] O. Perron, Die Lehre von den Kettenbrüchen. Band I. Elementare Kettenbrüche, Teubner, Stuttgart, 1954 | MR | Zbl