The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1247-1259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Markov partitions constructed by Adler and Weiss and the pre-Markov partitions related to them are important in the investigation of the properties of an Anosov diffeomorphism of a 2-torus. A connection is established between the number of equivalence classes of the simplest pre-Markov partitions of a fixed diffeomorphism with respect to the natural equivalence and the continued fraction expressing the slope of the unstable direction of the matrix defining this diffeomorphism. Bibliography: 7 titles.
Keywords: Anosov diffeomorphisms, continued fractions.
Mots-clés : Markov partitions
@article{SM_2009_200_8_a6,
     author = {A. V. Klimenko},
     title = {The number of classes of {Markov} partitions for a~hyperbolic automorphism of a~2-torus},
     journal = {Sbornik. Mathematics},
     pages = {1247--1259},
     year = {2009},
     volume = {200},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/}
}
TY  - JOUR
AU  - A. V. Klimenko
TI  - The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1247
EP  - 1259
VL  - 200
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/
LA  - en
ID  - SM_2009_200_8_a6
ER  - 
%0 Journal Article
%A A. V. Klimenko
%T The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus
%J Sbornik. Mathematics
%D 2009
%P 1247-1259
%V 200
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/
%G en
%F SM_2009_200_8_a6
A. V. Klimenko. The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1247-1259. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/

[1] R. L. Adler, B. Weiss, “Entropy, a complete metric invariant for automorphisms of the torus”, Proc. Nat. Acad. Sci. U.S.A., 57:6 (1967), 1573–1576 | DOI | MR | Zbl

[2] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[3] D. Ornstein, “Bernoulli shifts with the same entropy are isomorphic”, Advances in Math., 4:3 (1970), 337–352 | DOI | MR | Zbl

[4] D. V. Anosov, A. V. Klimenko, G. Kolutsky, On the hyperbolic automorphisms of the 2-torus and their Markov partitions, preprint MPIM2008-54, Max-Planck-Institut für Mathematik, Bonn, 2008

[5] E. Rykken, “Markov partitions for hyperbolic toral automorphisms of $\mathbb T^2$”, Rocky Mountain J. Math., 28:3 (1998), 1103–1124 | DOI | MR | Zbl

[6] A. Ya. Khinchin, Continued fractions, Dover Publ., Mineola, NY, 1997 | MR | MR | Zbl | Zbl

[7] O. Perron, Die Lehre von den Kettenbrüchen. Band I. Elementare Kettenbrüche, Teubner, Stuttgart, 1954 | MR | Zbl