The number of classes of Markov partitions for a~hyperbolic automorphism of a~2-torus
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1247-1259

Voir la notice de l'article provenant de la source Math-Net.Ru

The Markov partitions constructed by Adler and Weiss and the pre-Markov partitions related to them are important in the investigation of the properties of an Anosov diffeomorphism of a 2-torus. A connection is established between the number of equivalence classes of the simplest pre-Markov partitions of a fixed diffeomorphism with respect to the natural equivalence and the continued fraction expressing the slope of the unstable direction of the matrix defining this diffeomorphism. Bibliography: 7 titles.
Keywords: Anosov diffeomorphisms, continued fractions.
Mots-clés : Markov partitions
@article{SM_2009_200_8_a6,
     author = {A. V. Klimenko},
     title = {The number of classes of {Markov} partitions for a~hyperbolic automorphism of a~2-torus},
     journal = {Sbornik. Mathematics},
     pages = {1247--1259},
     publisher = {mathdoc},
     volume = {200},
     number = {8},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/}
}
TY  - JOUR
AU  - A. V. Klimenko
TI  - The number of classes of Markov partitions for a~hyperbolic automorphism of a~2-torus
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1247
EP  - 1259
VL  - 200
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/
LA  - en
ID  - SM_2009_200_8_a6
ER  - 
%0 Journal Article
%A A. V. Klimenko
%T The number of classes of Markov partitions for a~hyperbolic automorphism of a~2-torus
%J Sbornik. Mathematics
%D 2009
%P 1247-1259
%V 200
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/
%G en
%F SM_2009_200_8_a6
A. V. Klimenko. The number of classes of Markov partitions for a~hyperbolic automorphism of a~2-torus. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1247-1259. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a6/