On Fano threefolds with canonical Gorenstein singularities
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1215-1246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify three-dimensional Fano varieties with canonical Gorenstein singularities whose degree is greater than 64. Bibliography: 32 titles.
Keywords: Fano variety, anticanonical degree, canonical singularities.
@article{SM_2009_200_8_a5,
     author = {I. V. Karzhemanov},
     title = {On {Fano} threefolds with canonical {Gorenstein} singularities},
     journal = {Sbornik. Mathematics},
     pages = {1215--1246},
     year = {2009},
     volume = {200},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a5/}
}
TY  - JOUR
AU  - I. V. Karzhemanov
TI  - On Fano threefolds with canonical Gorenstein singularities
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1215
EP  - 1246
VL  - 200
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a5/
LA  - en
ID  - SM_2009_200_8_a5
ER  - 
%0 Journal Article
%A I. V. Karzhemanov
%T On Fano threefolds with canonical Gorenstein singularities
%J Sbornik. Mathematics
%D 2009
%P 1215-1246
%V 200
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a5/
%G en
%F SM_2009_200_8_a5
I. V. Karzhemanov. On Fano threefolds with canonical Gorenstein singularities. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1215-1246. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a5/

[1] A. Borisov, “Boundedness of Fano threefolds with log-terminal singularities of given index”, J. Math. Sci. Univ. Tokyo, 8:2 (2001), 329–342 | MR | Zbl

[2] V. A. Iskovskih, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl | Zbl

[3] V. A. Iskovskih, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl | Zbl

[4] Sh. Mori, Sh. Mukai, “Classification of Fano 3-folds with $B_2\ge2$”, Manuscripta Math., 36:2 (1981), 147–162 | DOI | MR | Zbl

[5] S. M. L'vovskiǐ, “Boundedness of the degree of Fano threefolds”, Math. USSR-Izv., 19:3 (1982), 521–558 | DOI | MR | Zbl

[6] Yo. Namikawa, “Smoothing Fano 3-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl

[7] Yu. G. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | MR | Zbl

[8] B. Nill, “Volume and lattice points of reflexive simplices”, Discrete Comput. Geom., 37:2 (2007), 301–320 | DOI | MR | Zbl

[9] G. Fano, “Sulle varieta algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno”, Mem. Mat. Sci. Fis. Natur. Soc. Ital. Sci. Ser. 3, 24 (1938), 41–66 | Zbl

[10] A. Conte, “Two examples of algebraic threefolds whose hyperplane sections are Enriques surfaces”, Algebraic geometry – open problems (Ravello, 1982), Lecture Notes in Math., 997, Springer-Verlag, Berlin, 1983, 124–130 | DOI | MR | Zbl

[11] A. Conte, J. P. Murre, “Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:1 (1985), 43–80 | MR | Zbl

[12] I. A. Cheltsov, “Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero”, Math. Notes, 59:4 (1996), 445–450 | DOI | MR | Zbl

[13] Yu. G. Prokhorov, “On algebraic threefolds whose hyperplane sections are Enriques surfaces”, Sb. Math., 186:9 (1995), 1341–1352 | DOI | MR | Zbl

[14] I. A. Cheltsov, “Rationality of an Enriques-Fano threefold of genus five”, Izv. Math., 68:3 (2004), 607–618 | DOI | MR | Zbl

[15] L. Bayle, “Classification des variétés complexes projectives de dimension trois dont une section hyperplane générale est une surface d'Enriques”, J. Reine Angew. Math., 449 (1995), 9–63 | MR | Zbl

[16] T. Sano, “On classification of non-Gorenstein $\mathbb Q$-Fano 3-folds of Fano index 1”, J. Math. Soc. Japan, 47:2 (1995), 369–380 | DOI | MR | Zbl

[17] Yu. G. Prokhorov, “On Fano–Enriques threefolds”, Sb. Math., 198:4 (2007), 559–574 | DOI | MR | Zbl

[18] A. L. Knutsen, A. F. Lopez, R. Muñoz, On the extendability of projective surfaces and a genus bound for Enriques–Fano threefolds, arXiv: math/0605750

[19] Yu. Kawamata, “Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl

[20] J. Kollár, Sh. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[21] M. Reid, Projective morphisms according to Kawamata, Preprint, Univ. of Warwick, 1983

[22] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 ; arXiv: math/0404156 | DOI | MR | Zbl

[23] V. V. Przhyjalkowski, I. A. Chel'tsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | MR | Zbl

[24] J. F. Kollár, Flops, Preprint, Harvard Univ., Cambridge, Massachusetts, 1987

[25] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[26] Sh. Mori, “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[27] S. Cutkosky, “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280:3 (1988), 521–525 | DOI | MR | Zbl

[28] M. Reid, “Canonical 3-folds”, Journées de Géometrie Algébrique d'Angers (Algebraic Geometry, Angers, 1979), Sijthoff Noordhoff, Alphen aan den Rijn–Germantown, 1979, 273–310 | MR | Zbl

[29] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR | Zbl

[30] M. Reid, “Chapters on algebraic surfaces”, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997, 3–159 | MR | Zbl

[31] M. Kreuzer, H. Skarke, “PALP: a package for analysing lattice polytopes with applications to toric geometry”, Comput. Phys. Comm., 157:1 (2004), 87–106 | DOI | MR

[32] V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 745–814 | DOI | MR | Zbl | Zbl