@article{SM_2009_200_8_a4,
author = {E. N. Zhabitskaya},
title = {The average length of reduced regular continued fractions},
journal = {Sbornik. Mathematics},
pages = {1181--1214},
year = {2009},
volume = {200},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a4/}
}
E. N. Zhabitskaya. The average length of reduced regular continued fractions. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1181-1214. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a4/
[1] O. Perron, Die Lehre von den Kettenbrüchen. Band I. Elementare Kettenbrüche, Teuber, Stuttgart, 1954 | MR | Zbl
[2] Yu. Yu. Finkel'shtein, “Klein polygons and reduced regular continued fractions”, Russian Math. Surveys, 48:3 (1993), 198–200 | DOI | MR | Zbl
[3] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis (papers in honor of E. Landau), Plenum, New York, 1968, 87–96 | MR | Zbl
[4] J. W. Porter, “On a theorem of Heilbronn”, Matematika, 22:1 (1975), 20–28 | MR | Zbl
[5] B. Vallée, “A unifying framework for the analysis of a class of Euclidean algorithms”, LATIN 2000: Theoretical informatics (Punta del Este, Uruguay, 2000), Lecture Notes in Comput. Sci., 1776, Springer-Verlag, Berlin, 343–354 | DOI | MR | Zbl
[6] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Russian Math. Surveys, 72:5 (2008), 1023–1059 | DOI | MR | Zbl
[7] B. Vallée, “Dynamical analysis of a class of Euclidean algorithms”, Theoret. Comput. Sci., 297:1–3 (2003), 447–486 | DOI | MR | Zbl
[8] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl
[9] A. Ya. Khinchin, Izbrannye trudy po teorii chisel, MTsNMO, M., 2006 | MR
[10] A. C. Yao, D. E. Knuth, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl
[11] A. I. Galochkin, Yu. V. Nesterenko, A. B. Shidlovskii, Vvedenie v teoriyu chisel, Izd-vo MGU, M., 1984 | MR | Zbl