Regularity of group algebras
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1165-1179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Carleman-type test for the Shilov regularity of weighted $\mathscr L^p$-algebras (with convolution as multiplication) on groups is extended to wider classes of Banach algebras of measurable functions on locally compact Abelian groups. Only simplest analytic methods and general algebraic ideas are used. In conclusion several questions are posed. Bibliography: 18 titles.
Keywords: Banach algebras, spectrum, locally compact Abelian groups.
@article{SM_2009_200_8_a3,
     author = {E. A. Gorin},
     title = {Regularity of group algebras},
     journal = {Sbornik. Mathematics},
     pages = {1165--1179},
     year = {2009},
     volume = {200},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a3/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Regularity of group algebras
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1165
EP  - 1179
VL  - 200
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a3/
LA  - en
ID  - SM_2009_200_8_a3
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Regularity of group algebras
%J Sbornik. Mathematics
%D 2009
%P 1165-1179
%V 200
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a3/
%G en
%F SM_2009_200_8_a3
E. A. Gorin. Regularity of group algebras. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1165-1179. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a3/

[1] J. Wermer, “On a class of normed rings”, Ark. Mat., 2:6 (1954), 537–551 | DOI | MR | Zbl

[2] Yu. N. Kuznetsova, “Weighted $L_p$-algebras on groups”, Funct. Anal. Appl., 40:3 (2006), 234–236 | DOI | MR | Zbl

[3] Yu. N. Kuznetsova, “Invariant weighted algebras $\mathscr L_p^w(G)$”, Math. Notes, 84:3–4 (2008), 529–537 | DOI | MR | Zbl

[4] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96:1 (1956), 1–66 | DOI | MR | Zbl

[5] Yu. N. Kuznetsova, Vesovye algebry na lokalno kompaktnykh gruppakh, Dis. ... kand. fiz.-matem. nauk, MGU, M., 2008

[6] Yu. N. Kuznetsova, “Constructions of regular algebras $\mathscr L_p^w(G)$”, Sb. Math., 200:2 (2009), 229–241 | DOI | MR | Zbl

[7] E. A. Gorin, “On the research of G. E. Shilov in the theory of commutative Banach algebras and their subsequent development”, Russian Math. Surveys, 33:4 (1978), 193–217 | DOI | MR | Zbl | Zbl

[8] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962 | MR | Zbl | Zbl

[9] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969 | MR | Zbl | Zbl

[10] B. T. Batikyan, E. A. Gorin, “A remark on nonlocal algebras”, J. Math. Sci., 16:3 (1981), 1167–1170 | DOI | MR | Zbl | Zbl

[11] Z. Sawoń, A. Warzecha, “On the general form of subalgebras of codimension 1 of $B$-algebras with a unit”, Studia Math., 29:3 (1968), 249–260 | MR | Zbl

[12] E. A. Gorin, “Subalgebras of finite codimension”, Math. Notes, 6:3 (1969), 649–652 | DOI | MR | Zbl

[13] I. C. Gohberg, I. A. Fel'dman, “Wiener–Hopf integro-difference equations”, Soviet Math. Dokl., 9 (1968), 1312–1316 | MR

[14] V. P. Gurarii, “Group methods in commutative harmonic analysis”, Commutative harmonic analysis II, Encyclopaedia Math. Sci., 25, Springer-Verlag, Berlin, 1988, 1–325 | MR | MR | Zbl | Zbl

[15] E. A. Gorin, “A function-algebra variant of a theorem of Bohr–van Kampen”, Math. USSR-Sb., 11:2 (1970), 233–243 | DOI | MR | Zbl

[16] J. L. Taylor, Measure algebras, Conference board of the mathematical sciences, Amer. Math. Soc., Providence, RI, 1973 | MR | Zbl

[17] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York–London–Sydney–Toronto, 1968 | MR | Zbl

[18] O. El-Fallah, N. K. Nikolskij, M. Zarrabi, “Resolvent estimates in Beurling–Sobolev algebras”, St. Petersburg Math. J., 10:6 (1999), 901–964 | MR | Zbl