Invariants of Lie algebras representable as semidirect sums with a commutative ideal
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1149-1164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit formulae for invariants of the coadjoint representation are presented for Lie algebras that are semidirect sums of a classical semisimple Lie algebra with a commutative ideal with respect to a representation of minimal dimension or to a $k$th tensor power of such a representation. These formulae enable one to apply some known constructions of complete commutative families and to compare integrable systems obtained in this way. A completeness criterion for a family constructed by the method of subalgebra chains is suggested and a conjecture is formulated concerning the equivalence of the general Sadetov method and a modification of the method of shifting the argument, which was suggested earlier by Brailov. Bibliography: 12 titles.
Keywords: semisimple Lie algebras, commutative ideal, dynamical systems.
Mots-clés : invariants
@article{SM_2009_200_8_a2,
     author = {A. S. Vorontsov},
     title = {Invariants of {Lie} algebras representable as semidirect sums with a~commutative ideal},
     journal = {Sbornik. Mathematics},
     pages = {1149--1164},
     year = {2009},
     volume = {200},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a2/}
}
TY  - JOUR
AU  - A. S. Vorontsov
TI  - Invariants of Lie algebras representable as semidirect sums with a commutative ideal
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1149
EP  - 1164
VL  - 200
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a2/
LA  - en
ID  - SM_2009_200_8_a2
ER  - 
%0 Journal Article
%A A. S. Vorontsov
%T Invariants of Lie algebras representable as semidirect sums with a commutative ideal
%J Sbornik. Mathematics
%D 2009
%P 1149-1164
%V 200
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a2/
%G en
%F SM_2009_200_8_a2
A. S. Vorontsov. Invariants of Lie algebras representable as semidirect sums with a commutative ideal. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1149-1164. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a2/

[1] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Prosperus, Izhevsk, 1995 | MR | Zbl

[2] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl

[3] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl | Zbl

[4] A. S. Miščenko, A. T. Fomenko, “On the integration of the Euler equations on semisimple Lie algebras”, Soviet Math. Dokl., 17:6 (1977), 1591–1593 | MR | Zbl

[5] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[6] V. V. Trofimov, A. T. Fomenko, “Non-invariant symplectic group structures and Hamiltonian flows on symmetric spaces”, Selecta Math. Soviet., 7:4 (1988), 355–414 | MR | Zbl | Zbl

[7] S. T. Sadetov, “A proof of the Mishchenko–Fomenko conjecture”, Dokl. Math., 70:1 (2004), 635–638 | MR

[8] A. V. Bolsinov, “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Tr. sem. po vekt. i tenz. analizu, 26 (2005), 87–109

[9] V. V. Trofimov, A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems”, Funct. Anal. Appl., 17:1 (1983), 23–29 | DOI | MR | Zbl

[10] A. Guseinov, Invarianty koprisoedinennogo predstavleniya algebr Li $\mathrm{so}(n)\,{+_\varphi}\, \mathbb R^n$, $\mathrm{so}(n)+_\varphi (\mathbb R^n)^k$, $\mathrm{gl}(n)+(\mathbb R^n)^k$, Diplomnaya rabota, MGU im. M. V. Lomonosova, mekh-mat, kaf. dif. geometrii i prilozhenii, M., 2006

[11] V. V. Trofimov, A. T. Fomenko, “Geometry of Poisson brackets and methods of Liouville integration of systems on symmetric spaces”, J. Soviet Math., 39:3 (1987), 2683–2746 | DOI | MR | Zbl

[12] M. M. Zhdanova, Postroenie polnykh kommutativnykh naborov dlya polupryamykh summ metodom Sadetova, Diplomnaya rabota, MGU im. M. V. Lomonosova, mekh-mat, kaf. dif. geometrii i prilozhenii, M., 2007