Approximation by simple partial fractions on the semi-axis
Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1127-1148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the simple partial fractions (that is, the logarithmic derivatives of polynomials) all of whose poles lie within the angular domain $\Lambda_\gamma=\{z:\arg z\in(\gamma,2\pi-\gamma)\}$, for any $\gamma\in[0,\pi/2]$. It is shown that they are contained in a proper half-space of the space $L_p({\mathbb R}_+)$ for any $p\in(1,p_0)$ (in particular, they are not dense in this space) and conversely, they are dense in $L_p({\mathbb R}_+)$ for any $p\geqslant p_0$, where $p_0=(2\pi-2\gamma)/(\pi-2\gamma)$. The distances from the poles of a simple partial fraction $r$ to the semi-axis ${\mathbb R}_+$ are estimated in terms of the degree of the fraction $r$ and its norm in $L_2({\mathbb R}_+)$. The approximation properties of sets of simple partial fractions of degree at most $n$ are investigated, as well as properties of the least deviations $\rho_n(f)$ from these sets for the functions $f\in L_2({\mathbb R}_+)$. Bibliography: 14 titles.
Keywords: approximation, simple partial fraction, integral metrics.
@article{SM_2009_200_8_a1,
     author = {P. A. Borodin},
     title = {Approximation by simple partial fractions on the semi-axis},
     journal = {Sbornik. Mathematics},
     pages = {1127--1148},
     year = {2009},
     volume = {200},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_8_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Approximation by simple partial fractions on the semi-axis
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1127
EP  - 1148
VL  - 200
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_8_a1/
LA  - en
ID  - SM_2009_200_8_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Approximation by simple partial fractions on the semi-axis
%J Sbornik. Mathematics
%D 2009
%P 1127-1148
%V 200
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2009_200_8_a1/
%G en
%F SM_2009_200_8_a1
P. A. Borodin. Approximation by simple partial fractions on the semi-axis. Sbornik. Mathematics, Tome 200 (2009) no. 8, pp. 1127-1148. http://geodesic.mathdoc.fr/item/SM_2009_200_8_a1/

[1] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl

[2] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[3] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | Zbl

[4] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:5–6 (2007), 725–732 | DOI | MR | Zbl

[5] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tezisy dokl. shkoly-konferentsii, Izd-vo Kazan. un-ta, Kazan, 1999, 74–79

[6] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:3–4 (2001), 502–507 | DOI | MR | Zbl

[7] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl

[8] V. I. Danchenko, “Estimates of derivatives of simplest fractions and other questions”, Sb. Math., 197:4 (2006), 505–524 | DOI | MR | Zbl

[9] Ya. V. Novak, “Best local approximation by simplest fractions”, Math. Notes, 84:5–6 (2008), 821–825 | DOI | MR

[10] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[11] M. A. Evgrafov, Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, K. A. Bezhanov, Sbornik zadach po teorii analiticheskikh funktsii, Nauka, M., 1969 | MR | Zbl

[12] N. V. Efimov, S. B. Stechkin, “Approximative kompaktheit und Chebyshevsche mengen”, Soviet Math. Dokl., 2 (1961), 1226–1228 | MR | Zbl

[13] A. A. Pekarskii, “Suschestvovanie funktsii s zadannymi nailuchshimi ravnomernymi ratsionalnymi priblizheniyami”, Izv. AN Belarusi. Ser. fiz-matem. nauk, 1994, no. 1, 23–26 | MR | Zbl

[14] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl