Affine algebraic groups with periodic components
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A connected component of an affine algebraic group is called periodic if all its elements have finite order. We
give a characterization of periodic components in terms of automorphisms with finitely many fixed points. Also discussed is which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
linear algebraic group, finite-order element, regular automorphism
Mots-clés : algebraic torus, Coxeter element.
                    
                  
                
                
                Mots-clés : algebraic torus, Coxeter element.
@article{SM_2009_200_7_a4,
     author = {S. N. Fedotov},
     title = {Affine algebraic groups with periodic components},
     journal = {Sbornik. Mathematics},
     pages = {1089--1104},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/}
}
                      
                      
                    S. N. Fedotov. Affine algebraic groups with periodic components. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
