Affine algebraic groups with periodic components
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104

Voir la notice de l'article provenant de la source Math-Net.Ru

A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finitely many fixed points. Also discussed is which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group. Bibliography: 10 titles.
Keywords: linear algebraic group, finite-order element, regular automorphism
Mots-clés : algebraic torus, Coxeter element.
@article{SM_2009_200_7_a4,
     author = {S. N. Fedotov},
     title = {Affine algebraic groups with periodic components},
     journal = {Sbornik. Mathematics},
     pages = {1089--1104},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/}
}
TY  - JOUR
AU  - S. N. Fedotov
TI  - Affine algebraic groups with periodic components
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1089
EP  - 1104
VL  - 200
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
LA  - en
ID  - SM_2009_200_7_a4
ER  - 
%0 Journal Article
%A S. N. Fedotov
%T Affine algebraic groups with periodic components
%J Sbornik. Mathematics
%D 2009
%P 1089-1104
%V 200
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
%G en
%F SM_2009_200_7_a4
S. N. Fedotov. Affine algebraic groups with periodic components. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/