Affine algebraic groups with periodic components
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finitely many fixed points. Also discussed is which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group. Bibliography: 10 titles.
Keywords: linear algebraic group, finite-order element, regular automorphism
Mots-clés : algebraic torus, Coxeter element.
@article{SM_2009_200_7_a4,
     author = {S. N. Fedotov},
     title = {Affine algebraic groups with periodic components},
     journal = {Sbornik. Mathematics},
     pages = {1089--1104},
     year = {2009},
     volume = {200},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/}
}
TY  - JOUR
AU  - S. N. Fedotov
TI  - Affine algebraic groups with periodic components
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1089
EP  - 1104
VL  - 200
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
LA  - en
ID  - SM_2009_200_7_a4
ER  - 
%0 Journal Article
%A S. N. Fedotov
%T Affine algebraic groups with periodic components
%J Sbornik. Mathematics
%D 2009
%P 1089-1104
%V 200
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
%G en
%F SM_2009_200_7_a4
S. N. Fedotov. Affine algebraic groups with periodic components. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/

[1] J. L. Dyer, “A nilpotent Lie algebra with nilpotent automorphism group”, Bull. Amer. Math. Soc., 76 (1970), 52–56 | DOI | MR | Zbl

[2] R. Steinberg, “Endomorphisms of linear algebraic groups”, Mem. Amer. Math. Soc., 80 (1968), 1–108 | MR | Zbl

[3] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[4] A. Borel, G. D. Mostow, “On semi-simple automorphisms of Lie algebras”, Ann. of Math. (2), 61:3 (1955), 389–405 | DOI | MR | Zbl

[5] V. A. Kreknin, “Solvability of Lie algebras with a regular automorphism of finite period”, Soviet Math. Dokl., 4 (1963), 683–685 | MR | Zbl

[6] A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994 | MR | Zbl | Zbl

[7] Zh.-P. Serr, Algebry Li i gruppy Li, Mir, M., 1969 ; J.-P. Serre, Lie algebras and Lie groups, Benjamin, New York–Amsterdam, 1965 ; Algèbres de Lie semi-simples complexes, Benjamin, New York–Amsterdam, 1966 | MR | Zbl | MR | Zbl | MR | Zbl

[8] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25:1 (1972), 1–59 | MR | Zbl

[10] L. Solomon, “Invariants of finite reflection groups”, Nagoya Math. J., 22 (1963), 57–64 | MR | Zbl