Mots-clés : algebraic torus, Coxeter element.
@article{SM_2009_200_7_a4,
author = {S. N. Fedotov},
title = {Affine algebraic groups with periodic components},
journal = {Sbornik. Mathematics},
pages = {1089--1104},
year = {2009},
volume = {200},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/}
}
S. N. Fedotov. Affine algebraic groups with periodic components. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1089-1104. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a4/
[1] J. L. Dyer, “A nilpotent Lie algebra with nilpotent automorphism group”, Bull. Amer. Math. Soc., 76 (1970), 52–56 | DOI | MR | Zbl
[2] R. Steinberg, “Endomorphisms of linear algebraic groups”, Mem. Amer. Math. Soc., 80 (1968), 1–108 | MR | Zbl
[3] A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl
[4] A. Borel, G. D. Mostow, “On semi-simple automorphisms of Lie algebras”, Ann. of Math. (2), 61:3 (1955), 389–405 | DOI | MR | Zbl
[5] V. A. Kreknin, “Solvability of Lie algebras with a regular automorphism of finite period”, Soviet Math. Dokl., 4 (1963), 683–685 | MR | Zbl
[6] A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994 | MR | Zbl | Zbl
[7] Zh.-P. Serr, Algebry Li i gruppy Li, Mir, M., 1969 ; J.-P. Serre, Lie algebras and Lie groups, Benjamin, New York–Amsterdam, 1965 ; Algèbres de Lie semi-simples complexes, Benjamin, New York–Amsterdam, 1966 | MR | Zbl | MR | Zbl | MR | Zbl
[8] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[9] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25:1 (1972), 1–59 | MR | Zbl
[10] L. Solomon, “Invariants of finite reflection groups”, Nagoya Math. J., 22 (1963), 57–64 | MR | Zbl