Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers initial-boundary-value problems for the Kuramoto-Sivashinsky equation both with Dirichlet boundary conditions and with Navier-type boundary conditions when $t>0$ and $x\in\Omega\subset\mathbb R^N$, $N\le3$. Given bounded initial data, the problems in question are shown to be uniquely globally (in $t>0$) solvable in relevant classes of functions.
Bibliography: 21 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
non-linear equations, a priori estimate, global solvability, the Kuramoto-Sivashinsky equation.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_7_a3,
     author = {S. I. Pokhozhaev},
     title = {Global solvability of the {Kuramoto-Sivashinsky} equation with bounded initial data},
     journal = {Sbornik. Mathematics},
     pages = {1075--1088},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/}
}
                      
                      
                    S. I. Pokhozhaev. Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/
