Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers initial-boundary-value problems for the Kuramoto-Sivashinsky equation both with Dirichlet boundary conditions and with Navier-type boundary conditions when $t>0$ and $x\in\Omega\subset\mathbb R^N$, $N\le3$. Given bounded initial data, the problems in question are shown to be uniquely globally (in $t>0$) solvable in relevant classes of functions. Bibliography: 21 titles.
Keywords: non-linear equations, a priori estimate, global solvability, the Kuramoto-Sivashinsky equation.
@article{SM_2009_200_7_a3,
     author = {S. I. Pokhozhaev},
     title = {Global solvability of the {Kuramoto-Sivashinsky} equation with bounded initial data},
     journal = {Sbornik. Mathematics},
     pages = {1075--1088},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1075
EP  - 1088
VL  - 200
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/
LA  - en
ID  - SM_2009_200_7_a3
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
%J Sbornik. Mathematics
%D 2009
%P 1075-1088
%V 200
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/
%G en
%F SM_2009_200_7_a3
S. I. Pokhozhaev. Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/