Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers initial-boundary-value problems for the Kuramoto-Sivashinsky equation both with Dirichlet boundary conditions and with Navier-type boundary conditions when $t>0$ and $x\in\Omega\subset\mathbb R^N$, $N\le3$. Given bounded initial data, the problems in question are shown to be uniquely globally (in $t>0$) solvable in relevant classes of functions. Bibliography: 21 titles.
Keywords: non-linear equations, a priori estimate, global solvability, the Kuramoto-Sivashinsky equation.
@article{SM_2009_200_7_a3,
     author = {S. I. Pokhozhaev},
     title = {Global solvability of the {Kuramoto-Sivashinsky} equation with bounded initial data},
     journal = {Sbornik. Mathematics},
     pages = {1075--1088},
     year = {2009},
     volume = {200},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1075
EP  - 1088
VL  - 200
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/
LA  - en
ID  - SM_2009_200_7_a3
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data
%J Sbornik. Mathematics
%D 2009
%P 1075-1088
%V 200
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/
%G en
%F SM_2009_200_7_a3
S. I. Pokhozhaev. Global solvability of the Kuramoto-Sivashinsky equation with bounded initial data. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1075-1088. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a3/

[1] H. Bellout, S. Benachour, E. S. Titi, “Finite-time singularity versus global regularity for hyper-viscous Hamilton–Jacobi-like equations”, Nonlinearity, 16:6 (2003), 1967–1989 | DOI | MR | Zbl

[2] J. C. Bronski, Th. N. Gambill, “Uncertainty estimates and $L_2$ bounds for the Kuramoto–Sivashinsky equation”, Nonlinearity, 19:9 (2006), 2023–2039 | DOI | MR | Zbl

[3] Ya. Cao, E. S. Titi, “Trivial stationary solutions to the Kuramoto–Sivashinsky and certain nonlinear elliptic equations”, J. Differential Equations, 231:2 (2006), 755–767 | DOI | MR | Zbl

[4] Sh. Cui, C. Guo, “Global existence and exponential decay of solutions of generalized Kuramoto–Sivashinsky equations”, J. Partial Differential Equations, 18:2 (2005), 167–184 | MR | Zbl

[5] J. N. Elgin, X. Wu, “Stability of cellular states of the Kuramoto–Sivashinsky equation”, SIAM J. Appl. Math., 56:6 (1996), 1621–1638 | DOI | MR | Zbl

[6] C. Foias, B. Nicolaenko, G. R. Sell, R. Temam, “Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension”, J. Math. Pures Appl. (9), 67:3 (1988), 197–226 | MR | Zbl

[7] L. Giacomelli, F. Otto, “New bounds for the Kuramoto–Sivashinsky equation”, Comm. Pure Appl. Math., 58:3 (2005), 297–318 | DOI | MR | Zbl

[8] B. Guo, “The existence and nonexistence of a global smooth solution for the initial value problem of generalized Kuramoto–Sivashinsky type equations”, J. Math. Res. Exposition, 11:1 (1991), 57–70 | MR | Zbl

[9] Ph. Kent, J. Elgin, “Travelling-waves of the Kuramoto–Sivashinsky, equation: period-multiplying bifurcations”, Nonlinearity, 5:4 (1992), 899–919 | DOI | MR | Zbl

[10] Yo. Kuramoto, T. Tsuzuki, “On the formation of dissipative structures in reaction-diffusion systems”, Progr. Theoret. Phys., 54:3 (1975), 687–699 | DOI

[11] Yo. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Progr. Theoret. Phys., 55:2 (1976), 356–369 | DOI

[12] N. A. Larkin, “Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains”, J. Math. Anal. Appl., 297:1 (2004), 169–185 | DOI | MR | Zbl

[13] J. Nickel, “Travelling wave solutions to the Kuramoto–Sivashinsky equation”, Chaos Solitons Fractals, 33:4 (2007), 1376–1382 | DOI | MR | Zbl

[14] G. I. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations”, Acta Astronaut., 4:11–12 (1977), 1177–1206 | DOI | MR | Zbl

[15] G. I. Sivashinsky, “On flame propagation under conditions of stoichiometry”, SIAM J. Appl. Math., 39:1 (1980), 67–82 | DOI | MR | Zbl

[16] E. Tadmor, “The well-posedness of the Kuramoto–Sivashinsky equation”, SIAM J. Math. Anal., 17:4 (1986), 884–893 | DOI | MR | Zbl

[17] D. Tseluiko, D. T. Papageorgiou, “A global attracting set for nonlocal Kuramoto–Sivashinsky equations arising in interfacial electrohydrodynamics”, European J. Appl. Math., 17:6 (2006), 677–703 | DOI | MR | Zbl

[18] H. Uecker, A. Wierschem, “A spatially periodic Kuramoto–Sivashinsky equation as a model problem for inclined film flow over wavy bottom”, Electron. J. Differential Equations, 2007, paper No 118 | MR | Zbl

[19] D. Yang, “Dynamics for the stochastic nonlocal Kuramoto–Sivashinsky equation”, J. Math. Anal. Appl., 330:1 (2007), 550–570 | DOI | MR | Zbl

[20] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[21] M. Troisi, “Ulteriori contributi alla teoria degli spazi di Sobolev non isotropi”, Ricerche Mat., 20:1 (1971), 90–117 | MR | Zbl