Trigonometric Padé approximants for functions with regularly
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions describing the regular decrease of the coefficients of a Fourier series $f(x)=a_0/2+\sum a_n\cos{kx}$ are found which ensure that the trigonometric Padé approximants $\pi^t_{n,m}(x;f)$ converge to the function $f$ in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.
Keywords: Fourier series, best rational approximations.
Mots-clés : trigonometric Padé approximants, Padé-Chebyshev approximants
@article{SM_2009_200_7_a2,
     author = {Yu. A. Labych and A. P. Starovoitov},
     title = {Trigonometric {Pad\'e} approximants for functions with regularly},
     journal = {Sbornik. Mathematics},
     pages = {1051--1074},
     year = {2009},
     volume = {200},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/}
}
TY  - JOUR
AU  - Yu. A. Labych
AU  - A. P. Starovoitov
TI  - Trigonometric Padé approximants for functions with regularly
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1051
EP  - 1074
VL  - 200
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/
LA  - en
ID  - SM_2009_200_7_a2
ER  - 
%0 Journal Article
%A Yu. A. Labych
%A A. P. Starovoitov
%T Trigonometric Padé approximants for functions with regularly
%J Sbornik. Mathematics
%D 2009
%P 1051-1074
%V 200
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/
%G en
%F SM_2009_200_7_a2
Yu. A. Labych; A. P. Starovoitov. Trigonometric Padé approximants for functions with regularly. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/

[1] G. G. Lorentz, M. von Golitschek, Yu. Makavoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl

[2] Kh. Semerdzhiev, “Approksimatsii Pade dlya funktsii, zadannykh trigonometricheskimi ryadami”, Nauch. tr. Plovd. un-ta, 13:1 (1975), 409–419 | MR

[3] Kh. Semerdzhiev, Trigonometricheskie approksimatsii Pade i effekt Gibbsa, preprint R5-1284, Soobsch. OIYaI, Dubna, 1979

[4] L. L. Berezkina, O ratsionalnoi approksimatsii tselykh $2\pi$-periodicheskikh funktsii, dep. v VINITI 7263-V86

[5] G. A. Baker, jr.; P. Graves-Morris, Padé approximants. Part I, II, Encyclopedia Math. Appl., 13–14, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl

[6] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141 | DOI | MR | Zbl

[7] G. Németh, G. Páris, “The Gibbs phenomenon in generalized Padé approximation”, J. Math. Phys., 26:6 (1985), 1175–1178 | DOI | MR | Zbl

[8] I. P. Natanson, Constructive function theory, vol. I–III, Ungar Publ., New York, 1964–1965 | MR | MR | Zbl | Zbl

[9] L. L. Berezkina, Trigonometricheskie approksimatsii Pade i nailuchshie ratsionalnye priblizheniya, Dis. ... kand. fiz.-matem. nauk, BGU, Minsk, 1988

[10] Ta Khong Kuang, Approksimatsii Pade i asimptotiki nailuchshikh ratsionalnykh priblizhenii, Dis. ... kand. fiz.-matem. nauk, BGU, Minsk, 1991

[11] D. S. Lubinsky, “Padé tables of entire functions of very slow and smooth growth”, Constr. Approx., 1:1 (1985), 349–358 | DOI | MR | Zbl

[12] D. S. Lubinsky, “Uniform convergence of rows of the Padé table for functions with smooth Maclaurin series coefficients”, Constr. Approx., 3:1 (1987), 307–330 | DOI | MR | Zbl

[13] D. S. Lubinsky, “Padé tables of entire functions of very slow and smooth growth. II”, Constr. Approx., 4:1 (1988), 321–339 | DOI | MR | Zbl

[14] A. L. Levin, D. S. Lubinsky, “Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly”, Trans. Amer. Math. Soc., 293:2 (1986), 533–545 | DOI | MR | Zbl

[15] E. B. Saff, “The convergence of rational functions of best approximation to the exponential function. II”, Proc. Amer. Math. Soc, 32:1 (1972), 187–194 | DOI | MR | Zbl

[16] E. B. Saff, “On the degree of best rational approximation to the exponential function”, J. Approximation Theory, 9:2 (1973), 97–101 | DOI | MR | Zbl

[17] A. L. Levin, D. S. Lubinsky, “Rows and diagonals of the Walsh array for entire functions with smooth Maclaurin series coefficients”, Constr. Approx., 6:3 (1990), 257–286 | DOI | MR | Zbl

[18] L. L. Berezkina, V. N. Rusak, “O nailuchshikh ratsionalnykh approksimatsiyakh nekotorykh tselykh funktsii”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1990, no. 4, 27–32 | MR | Zbl

[19] A. P. Starovoitov, N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions”, Sb. Math., 198:7 (2007), 1011–1023 | DOI | MR | Zbl

[20] V. N. Rusak, A. P. Starovoitov, “Padé approximants for entire functions with regularly decreasing Taylor coefficients”, Sb. Math., 193:9 (2002), 1303–1332 | DOI | MR | Zbl

[21] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$. II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[22] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[23] G. Shtal', “Best uniform rational approximation of $|x|$ on $[-1,1]$”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 461–487 | DOI | MR | Zbl

[24] H. R. Stahl, “Best uniform rational approximation $x^\alpha$ on $[0,1]$”, Acta Math., 190:2 (2003), 241–306 | DOI | MR | Zbl

[25] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl

[26] S. N. Bernshtein, Sobranie sochinenii. T. 1. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952 | MR | Zbl

[27] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[28] V. K. Dzjadyk, “On the asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$, $\operatorname{sh}z$ and $\operatorname{ch}z$”, Math. USSR-Sb., 36:2 (1980), 231–249 | DOI | MR | Zbl | Zbl

[29] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ONTI, M.–L., 1937

[30] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR

[31] A. A. Gončar, “On a theorem of Saff”, Math. USSR-Sb., 23:1 (1974), 149–154 | DOI | MR | Zbl | Zbl