Trigonometric Pad\'e approximants for functions with regularly
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient conditions describing the regular decrease of the coefficients of a Fourier series $f(x)=a_0/2+\sum a_n\cos{kx}$ are found which ensure that the trigonometric Padé approximants
$\pi^t_{n,m}(x;f)$ converge to the function $f$ in the uniform norm at a rate which coincides asymptotically
with the highest possible one. The results obtained are applied to problems dealing with
finding sharp constants for rational approximations.
Bibliography: 31 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Fourier series, trigonometric Padé approximants, Padé-Chebyshev approximants, best rational approximations.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_7_a2,
     author = {Yu. A. Labych and A. P. Starovoitov},
     title = {Trigonometric {Pad\'e} approximants for functions with regularly},
     journal = {Sbornik. Mathematics},
     pages = {1051--1074},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/}
}
                      
                      
                    Yu. A. Labych; A. P. Starovoitov. Trigonometric Pad\'e approximants for functions with regularly. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/
