Trigonometric Pad\'e approximants for functions with regularly
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions describing the regular decrease of the coefficients of a Fourier series $f(x)=a_0/2+\sum a_n\cos{kx}$ are found which ensure that the trigonometric Padé approximants $\pi^t_{n,m}(x;f)$ converge to the function $f$ in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.
Keywords: Fourier series, trigonometric Padé approximants, Padé-Chebyshev approximants, best rational approximations.
@article{SM_2009_200_7_a2,
     author = {Yu. A. Labych and A. P. Starovoitov},
     title = {Trigonometric {Pad\'e} approximants for functions with regularly},
     journal = {Sbornik. Mathematics},
     pages = {1051--1074},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/}
}
TY  - JOUR
AU  - Yu. A. Labych
AU  - A. P. Starovoitov
TI  - Trigonometric Pad\'e approximants for functions with regularly
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1051
EP  - 1074
VL  - 200
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/
LA  - en
ID  - SM_2009_200_7_a2
ER  - 
%0 Journal Article
%A Yu. A. Labych
%A A. P. Starovoitov
%T Trigonometric Pad\'e approximants for functions with regularly
%J Sbornik. Mathematics
%D 2009
%P 1051-1074
%V 200
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/
%G en
%F SM_2009_200_7_a2
Yu. A. Labych; A. P. Starovoitov. Trigonometric Pad\'e approximants for functions with regularly. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 1051-1074. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a2/