An analogue of Fabry's theorem for generalized Padé approximants
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 981-1050 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The current theory of Padé approximation emphasises results of an inverse character, when conclusions about the properties of the approximated function are drawn from information about the behaviour of the approximants. In this paper Gonchar's conjecture is proved; it states that analogues of Fabry's classical ‘ratio’ theorem hold for rows of the table of Padé approximants for orthogonal expansions, multipoint Padé approximants and Padé-Faber approximants. These are the most natural generalizations of the construction of classical Padé approximants. For these Gonchar's conjecture has already been proved by Suetin. The proof presented here is based, on the one hand, on Suetin's result and, on the other hand, on an extension of Poincaré's theorem on recurrence relations with coefficients constant in the limit, which is obtained in the paper. Bibliography: 19 titles.
Keywords: recurrence relations, Fabry's theorem, Faber polynomials.
Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2009_200_7_a1,
     author = {V. I. Buslaev},
     title = {An analogue of {Fabry's} theorem for generalized {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {981--1050},
     year = {2009},
     volume = {200},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - An analogue of Fabry's theorem for generalized Padé approximants
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 981
EP  - 1050
VL  - 200
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a1/
LA  - en
ID  - SM_2009_200_7_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T An analogue of Fabry's theorem for generalized Padé approximants
%J Sbornik. Mathematics
%D 2009
%P 981-1050
%V 200
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a1/
%G en
%F SM_2009_200_7_a1
V. I. Buslaev. An analogue of Fabry's theorem for generalized Padé approximants. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 981-1050. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a1/

[1] G. A. Baker, jr.; P. Graves-Morris, Padé approximants. Part I, II, Encyclopedia Math. Appl., 13–14, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl

[2] G. A. Baker, jr., Essentials of Padé approximants, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[3] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 2003, no. 1, 83–106 | DOI | MR

[4] S. P. Suetin, “On an inverse problem for the $m$-th row of the Padé table”, Math. USSR-Sb., 52:1 (1985), 231–244 | DOI | MR | Zbl | Zbl

[5] E. Fabry, “Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux”, Ann. Sci. École Norm. Sup. (3), 13 (1896), 367–399 | MR | Zbl

[6] A. A. Gončar, “Poles of rows of the Padé table and meromorphic continuation of functions”, Math. USSR-Sb., 43:4 (1982), 527–546 | DOI | MR | Zbl | Zbl

[7] V. I. Buslaev, “On the poles of the $m$-th row of the Padé table”, Math. USSR-Sb., 45:4 (1983), 423–429 | DOI | MR | Zbl | Zbl

[8] V. I. Buslaev, “Relations for the coefficients, and singular points of a function”, Math. USSR-Sb., 59:2 (1988), 349–377 | DOI | MR | Zbl | Zbl

[9] V. I. Buslaev, “On the Fabry ratio theorem for orthogonal series”, Proc. Steklov Inst. Math., 253:1 (2006), 8–21 | DOI | MR

[10] E. A. Rahmanov, “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR-Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl | Zbl

[11] E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117 | DOI | MR | Zbl | Zbl

[12] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[13] S. P. Suetin, “Inverse theorems on generalized Padé approximants”, Math. USSR-Sb., 37:4 (1980), 581–597 | DOI | MR | Zbl | Zbl

[14] V. I. Smirnov, N. A. Lebedev, Functions of a complex variable. Constructive theory, The MIT Press, Cambridge, MA, 1968 | MR | MR | Zbl | Zbl

[15] H. Poincaré, “Sur les Equations Linéaires aux Différentielles Ordinaires et aux Différences Finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl

[16] T. Kakehashi, “The decomposition of coefficients of power-series and the divergence of interpolation polynomials”, Proc. Japan Acad., 31:8 (1955), 517–523 | DOI | MR | Zbl

[17] Sh. Agmon, “Sur les séries de Dirichlet”, Ann. Sci. École Norm. Sup. (3), 66 (1949), 263–310 | MR | Zbl

[18] J. Hadamard, “Essay on the study of functions defined by their Taylor expansion”, J. Math. (4), 8 (1892), 101–186 | Zbl

[19] R. Montessus de Ballore, “Sur les fractions continues algébriques”, Bull. Soc. Math. France, 30 (1902), 28–36 | MR | Zbl