On the Lefschetz coincidence theorem
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 943-979

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lefschetz number is constructed for two maps of noncompact nonorientable topological manifolds of the same dimension; it is proved that if it is nonzero, then there is a coincidence point of these maps. Bibliography: 15 titles.
Keywords: coincidence points, Lefschetz numbers, maps of manifolds.
@article{SM_2009_200_7_a0,
     author = {D. V. Artamonov},
     title = {On the {Lefschetz} coincidence theorem},
     journal = {Sbornik. Mathematics},
     pages = {943--979},
     publisher = {mathdoc},
     volume = {200},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - On the Lefschetz coincidence theorem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 943
EP  - 979
VL  - 200
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/
LA  - en
ID  - SM_2009_200_7_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T On the Lefschetz coincidence theorem
%J Sbornik. Mathematics
%D 2009
%P 943-979
%V 200
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/
%G en
%F SM_2009_200_7_a0
D. V. Artamonov. On the Lefschetz coincidence theorem. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 943-979. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/