On the Lefschetz coincidence theorem
Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 943-979 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lefschetz number is constructed for two maps of noncompact nonorientable topological manifolds of the same dimension; it is proved that if it is nonzero, then there is a coincidence point of these maps. Bibliography: 15 titles.
Keywords: coincidence points, Lefschetz numbers, maps of manifolds.
@article{SM_2009_200_7_a0,
     author = {D. V. Artamonov},
     title = {On the {Lefschetz} coincidence theorem},
     journal = {Sbornik. Mathematics},
     pages = {943--979},
     year = {2009},
     volume = {200},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - On the Lefschetz coincidence theorem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 943
EP  - 979
VL  - 200
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/
LA  - en
ID  - SM_2009_200_7_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T On the Lefschetz coincidence theorem
%J Sbornik. Mathematics
%D 2009
%P 943-979
%V 200
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/
%G en
%F SM_2009_200_7_a0
D. V. Artamonov. On the Lefschetz coincidence theorem. Sbornik. Mathematics, Tome 200 (2009) no. 7, pp. 943-979. http://geodesic.mathdoc.fr/item/SM_2009_200_7_a0/

[1] V. R. Davidyan, “On points of coincidence of two mappings”, Math. USSR-Sb., 40:2 (1981), 205–210 | DOI | MR | Zbl | Zbl

[2] V. R. Davidyan, “On coincidence points of two maps for manifolds with boundaries”, Russian Math. Surveys, 380:1 (1983), 176 | DOI | MR | Zbl | Zbl

[3] D. L. Gonçalves, J. Jezierski, “Lefschetz coincidence formula on non-orientable manifolds”, Fund. Math., 153:1 (1997), 1–23 | MR | Zbl

[4] G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl

[5] J. Leray, “Théorie des points fixes: Indice total et nombre de Lefschetz”, Bull. Soc. Math. France, 87 (1959), 221–233 | MR | Zbl

[6] L. Górniewicz, “On the Lefschetz fixed point theorem”, Handbook of topological fixed point theory, Springer-Verlag, Dordrecht–Berlin, 2005, 43–82 | MR | Zbl

[7] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto, ON–London, 1966 | MR | MR | Zbl | Zbl

[8] E. G. Sklyarenko, “On the nature of homological products and duality”, Russian Math. Surveys, 49:1 (1994), 151–215 | DOI | MR | Zbl

[9] A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, 200, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl

[10] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, NJ, 1952 | MR | Zbl

[11] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl

[12] E. G. Skljarenko, “On the theory of generalized manifolds”, Math. USSR-Izv., 5:4 (1971), 845–857 | DOI | MR | Zbl

[13] A. Granas, “Generalizing the Hopf–Lefschetz fixed point theorem for non-compact ANR-s”, Symposium on infinite-dimensional topology (Louisiana State Univ., Baton Rouge, LA, 1967), Princeton Univ. Press, Princeton, NJ, 1972, 119–130 | MR | Zbl

[14] M. Nakaoka, “Note on the Lefschetz fixed point theorem”, Osaka J. Math., 1969, no. 6, 135–142 | MR | Zbl

[15] E. G. Skljarenko, “On homologically locally connected spaces”, Math. USSR-Izv., 17:3 (1981), 601–614 | DOI | MR | Zbl | Zbl