On uniform approximation of elliptic functions by Pad\'e approximants
Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 923-941

Voir la notice de l'article provenant de la source Math-Net.Ru

Diagonal Padé approximants of elliptic functions are studied. It is known that the absence of uniform convergence of such approximants is related to them having spurious poles that do not correspond to any singularities of the function being approximated. A sequence of piecewise rational functions is proposed, which is constructed from two neighbouring Padé approximants and approximates an elliptic function locally uniformly in the Stahl domain. The proof of the convergence of this sequence is based on deriving strong asymptotic formulae for the remainder function and Padé polynomials and on the analysis of the behaviour of a spurious pole. Bibliography: 23 titles.
Keywords: elliptic functions, the Stahl domain, uniform approximations.
Mots-clés : Padé approximants
@article{SM_2009_200_6_a5,
     author = {D. V. Khristoforov},
     title = {On uniform approximation of elliptic functions by {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {923--941},
     publisher = {mathdoc},
     volume = {200},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/}
}
TY  - JOUR
AU  - D. V. Khristoforov
TI  - On uniform approximation of elliptic functions by Pad\'e approximants
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 923
EP  - 941
VL  - 200
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/
LA  - en
ID  - SM_2009_200_6_a5
ER  - 
%0 Journal Article
%A D. V. Khristoforov
%T On uniform approximation of elliptic functions by Pad\'e approximants
%J Sbornik. Mathematics
%D 2009
%P 923-941
%V 200
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/
%G en
%F SM_2009_200_6_a5
D. V. Khristoforov. On uniform approximation of elliptic functions by Pad\'e approximants. Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 923-941. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/