Mots-clés : Padé approximants
@article{SM_2009_200_6_a5,
author = {D. V. Khristoforov},
title = {On uniform approximation of elliptic functions by {Pad\'e} approximants},
journal = {Sbornik. Mathematics},
pages = {923--941},
year = {2009},
volume = {200},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/}
}
D. V. Khristoforov. On uniform approximation of elliptic functions by Padé approximants. Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 923-941. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a5/
[1] G. Frobenius, “Ueber Relationen zwischen den Näherungsbrüchen von Potenzreihen”, J. Reine Angew. Math., 90 (1880), 1–17 | Zbl
[2] H. Padé, “Sur la représentation approchée d'une fonction par des fractions rationnel”, Ann. Sci. École Norm. Sup. (3), 9 (1892), 3–93 | MR | Zbl
[3] A. A. Gončar, “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR | Zbl
[4] G. A. Baker, jr.; P. Graves-Morris, Padé approximants. Part I, II, Encyclopedia Math. Appl., 13–14, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl
[5] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[6] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141 | DOI | MR | Zbl
[7] A. A. Gonchar, “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matem., 2003, no. 1, 83–106 | DOI | MR
[8] J. Gammel, W. Marshall, L. Morgan, “An application of Padé approximants to heisenberg ferromagnetism and antiferromagnetism”, Proc. Roy. Soc. London Ser. A, 275:1361 (1963), 257–270 | DOI
[9] R. March, P. Barone, “Reconstruction of a piecewise constant function from noisy Fourier coefficients by Padé method”, SIAM J. Appl. Math., 60:4 (2000), 1137–1156 | DOI | MR | Zbl
[10] V. Ilina, P. Silaev, Chislennye metody dlya fizikov-teoretikov, In-t komp. issledovanii, M.–Izhevsk, 2003
[11] H. N. A. Ismail, K. R. Raslan, G. S. E. Salem, A. A. Abd Rabboh, “Comparison study between restrictive Taylor, restrictive Padé approximations and Adomian decomposition method for the solitary wave solution of the General KdV equation”, Appl. Math. Comput., 167:2 (2005), 849–869 | DOI | MR | Zbl
[12] M. El-Shahed, “Application of differential transform method to non-linear oscillatory systems”, Commun. Nonlinear Sci. Numer. Simul., 13:8 (2008), 1714–1720 | DOI
[13] S. B. Gashkov, I. B. Gashkov, “Berlekamp–Massey algorithm, continued fractions, Padé approximations, and orthogonal polynomials”, Math. Notes, 79:1–2 (2006), 41–54 | DOI | MR | Zbl
[14] I. V. Andrianov, “Approksimatsii Pade i kontinualizatsiya dlya odnomernoi tsepochki mass”, Matem. modelirovanie, 18:1 (2006), 43–58 | MR | Zbl
[15] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[16] S. P. Suetin, “Convergence of Chebyshëv continued fractions for elliptic functions”, Sb. Math., 194:12 (2003), 1807–1835 | DOI | MR | Zbl
[17] S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | MR | Zbl
[18] S. P. Suetin, “On interpolation properties of diagonal Padé approximants of elliptic functions”, Russian Math. Surveys, 59:4 (2004), 800–802 | DOI | MR | Zbl
[19] H. Stahl, “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, 121–193 | MR | Zbl
[20] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thesis, Zurich, 1908 | Zbl
[21] B. Beckermann, V. Kaliaguine, “The Diagonal of the Padé table and the approximation of the Weyl function of second-order difference operators”, Constr. Approx., 13:4 (1997), 481–510 | DOI | MR | Zbl
[22] E. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl | Zbl
[23] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher, 184, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | MR | Zbl